基于一致性估计特征值的密集认知小蜂窝网络协同频谱感知

Meng Zhao, Caili Guo, Chunyan Feng, Shuo Chen
{"title":"基于一致性估计特征值的密集认知小蜂窝网络协同频谱感知","authors":"Meng Zhao, Caili Guo, Chunyan Feng, Shuo Chen","doi":"10.1109/ICCW.2017.7962709","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the spectrum sensing problem of detecting a primary signal of a macro cell in a cognitive radio network by employing multiple dense small cell base stations. In consideration of the number of cooperative small cells (sample dimension) is comparable to the number of sample (sample size) due to the dense deployment of small cells, sample covariance matrix is no more a good estimator of statistical covariance matrix. A consistent-estimated eigenvalues based cooperative spectrum sensing (CEE-CSS) algorithm is proposed by utilizing consistent estimators of eigenvalues which are proven to be consistent when the sample dimension goes to infinity at the same rate as sample size. Effect of the eigenvalue splitting condition on sensing performance of the CEE-CSS is analyzed through simulations. Further simulation results present that the proposed CEE-CSS enables better sensing performance than a maximum-minimum eigenvalue detection based on oracle approximating shrinkage estimator (OAS-MME).","PeriodicalId":6656,"journal":{"name":"2017 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"29 1","pages":"510-515"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Consistent-estimated eigenvalues based cooperative spectrum sensing for dense cognitive Small Cell Network\",\"authors\":\"Meng Zhao, Caili Guo, Chunyan Feng, Shuo Chen\",\"doi\":\"10.1109/ICCW.2017.7962709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the spectrum sensing problem of detecting a primary signal of a macro cell in a cognitive radio network by employing multiple dense small cell base stations. In consideration of the number of cooperative small cells (sample dimension) is comparable to the number of sample (sample size) due to the dense deployment of small cells, sample covariance matrix is no more a good estimator of statistical covariance matrix. A consistent-estimated eigenvalues based cooperative spectrum sensing (CEE-CSS) algorithm is proposed by utilizing consistent estimators of eigenvalues which are proven to be consistent when the sample dimension goes to infinity at the same rate as sample size. Effect of the eigenvalue splitting condition on sensing performance of the CEE-CSS is analyzed through simulations. Further simulation results present that the proposed CEE-CSS enables better sensing performance than a maximum-minimum eigenvalue detection based on oracle approximating shrinkage estimator (OAS-MME).\",\"PeriodicalId\":6656,\"journal\":{\"name\":\"2017 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"29 1\",\"pages\":\"510-515\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2017.7962709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2017.7962709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们考虑了在认知无线网络中使用多个密集的小蜂窝基站来检测一个宏蜂窝的一次信号的频谱感知问题。由于小单元的密集部署,考虑到合作小单元的数量(样本维数)与样本数量(样本大小)相当,样本协方差矩阵不再是统计协方差矩阵的良好估计量。提出了一种基于一致性估计特征值的协同频谱感知(CEE-CSS)算法,该算法利用特征值的一致性估计,证明了当样本维数以与样本大小相同的速率趋于无穷大时,特征值的一致性估计是一致的。通过仿真分析了特征值分裂条件对CEE-CSS传感性能的影响。进一步的仿真结果表明,与基于oracle逼近收缩估计器(OAS-MME)的最大-最小特征值检测相比,所提出的CEE-CSS具有更好的传感性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consistent-estimated eigenvalues based cooperative spectrum sensing for dense cognitive Small Cell Network
In this paper, we consider the spectrum sensing problem of detecting a primary signal of a macro cell in a cognitive radio network by employing multiple dense small cell base stations. In consideration of the number of cooperative small cells (sample dimension) is comparable to the number of sample (sample size) due to the dense deployment of small cells, sample covariance matrix is no more a good estimator of statistical covariance matrix. A consistent-estimated eigenvalues based cooperative spectrum sensing (CEE-CSS) algorithm is proposed by utilizing consistent estimators of eigenvalues which are proven to be consistent when the sample dimension goes to infinity at the same rate as sample size. Effect of the eigenvalue splitting condition on sensing performance of the CEE-CSS is analyzed through simulations. Further simulation results present that the proposed CEE-CSS enables better sensing performance than a maximum-minimum eigenvalue detection based on oracle approximating shrinkage estimator (OAS-MME).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信