银河系电子-正电子湮灭辐射和x射线&伽玛射线漫射的积分结果

IF 11.7 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Eugene Churazov , Laurent Bouchet , Pierre Jean , Elisabeth Jourdain , Jürgen Knödlseder , Roman Krivonos , Jean-Pierre Roques , Sergey Sazonov , Thomas Siegert , Andrew Strong , Rashid Sunyaev
{"title":"银河系电子-正电子湮灭辐射和x射线&伽玛射线漫射的积分结果","authors":"Eugene Churazov ,&nbsp;Laurent Bouchet ,&nbsp;Pierre Jean ,&nbsp;Elisabeth Jourdain ,&nbsp;Jürgen Knödlseder ,&nbsp;Roman Krivonos ,&nbsp;Jean-Pierre Roques ,&nbsp;Sergey Sazonov ,&nbsp;Thomas Siegert ,&nbsp;Andrew Strong ,&nbsp;Rashid Sunyaev","doi":"10.1016/j.newar.2020.101548","DOIUrl":null,"url":null,"abstract":"<div><p>This review summarizes <em>INTEGRAL</em><span> results on two topics: the electron-positron annihilation line and X-ray &amp; Gamma-ray diffuse emission of the Milky Way.</span></p><p>The electron-positron annihilation line at 511 keV is the most prominent spectral feature in the gamma-ray spectrum of the Milky Way. From the observational perspective, <em>INTEGRAL</em> has already provided constraints on the total flux, morphology of the annihilation line distribution, the spectral shape of the line and the strength of the three-photon annihilation continuum. In particular, the most salient morphological feature in the all-sky map of the annihilation emission based on <em>INTEGRAL</em> data is the so-called ”Bulge” component, with the characteristic size of <span><math><mrow><mo>∼</mo><mn>6</mn><mo>−</mo><msup><mn>10</mn><mo>∘</mo></msup></mrow></math></span> and the positrons’ annihilation rate of <span><math><mrow><mo>∼</mo><msup><mn>10</mn><mn>43</mn></msup><mspace></mspace><msup><mi>s</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span><span><span>. A more extended ”Disc” component is also present, although its total luminosity is model dependent. The brightness of the Bulge component compared to the Disc is in contrast with other multi-wavelength images of the Milky Way. The annihilation spectrum consists of a line centered at 511 keV and the ortho-positronium continuum. The strength of the latter indicates that the majority of annihilations go via the positronium formation channel. The shape of the annihilation spectrum is consistent with the assumption that most of the </span>positrons<span> annihilate in a warm and partly ionized medium, although more complicated scenarios are also possible. From the theoretical point of view, a successful model should answer three main questions: (i) physical mechanism(s) responsible for production of positrons, (ii) positrons spatial migration (if any) from the production sites, and (iii) physics of annihilation. Remarkably, despite significant progress provided by </span></span><em>INTEGRAL</em> in the characterization of the Milky Way annihilation emission, the origin of positrons remains an open question. The essence of the problem is the abundance of positron production channels and the uncertainty in the distance positrons can travel before annihilation.</p><p>The spectral-imaging mapping of the Milky Way by <em>INTEGRAL</em><span> provides important constraints on the nature of the Galactic diffuse continuum hard X-rays and soft gamma-rays in the 20 keV – 2  MeV band. Below  ~ 60 keV, numerous unresolved objects (accreting white dwarfs) dominate the flux, but their contribution fades away at higher energies. Models of cosmic-ray induced emission suggest that the dominant diffuse component above  ~ 60 keV (excluding annihilation emission) is inverse Compton scattering<span> from GeV electrons on interstellar radiation fields<span>. Non-thermal bremsstrahlung contributes at a lower level. These models are consistent with the continuum spectrum observed by </span></span></span><em>INTEGRAL</em> and COMPTEL.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"90 ","pages":"Article 101548"},"PeriodicalIF":11.7000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2020.101548","citationCount":"8","resultStr":"{\"title\":\"INTEGRAL results on the electron-positron annihilation radiation and X-ray & Gamma-ray diffuse emission of the Milky Way\",\"authors\":\"Eugene Churazov ,&nbsp;Laurent Bouchet ,&nbsp;Pierre Jean ,&nbsp;Elisabeth Jourdain ,&nbsp;Jürgen Knödlseder ,&nbsp;Roman Krivonos ,&nbsp;Jean-Pierre Roques ,&nbsp;Sergey Sazonov ,&nbsp;Thomas Siegert ,&nbsp;Andrew Strong ,&nbsp;Rashid Sunyaev\",\"doi\":\"10.1016/j.newar.2020.101548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review summarizes <em>INTEGRAL</em><span> results on two topics: the electron-positron annihilation line and X-ray &amp; Gamma-ray diffuse emission of the Milky Way.</span></p><p>The electron-positron annihilation line at 511 keV is the most prominent spectral feature in the gamma-ray spectrum of the Milky Way. From the observational perspective, <em>INTEGRAL</em> has already provided constraints on the total flux, morphology of the annihilation line distribution, the spectral shape of the line and the strength of the three-photon annihilation continuum. In particular, the most salient morphological feature in the all-sky map of the annihilation emission based on <em>INTEGRAL</em> data is the so-called ”Bulge” component, with the characteristic size of <span><math><mrow><mo>∼</mo><mn>6</mn><mo>−</mo><msup><mn>10</mn><mo>∘</mo></msup></mrow></math></span> and the positrons’ annihilation rate of <span><math><mrow><mo>∼</mo><msup><mn>10</mn><mn>43</mn></msup><mspace></mspace><msup><mi>s</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span><span><span>. A more extended ”Disc” component is also present, although its total luminosity is model dependent. The brightness of the Bulge component compared to the Disc is in contrast with other multi-wavelength images of the Milky Way. The annihilation spectrum consists of a line centered at 511 keV and the ortho-positronium continuum. The strength of the latter indicates that the majority of annihilations go via the positronium formation channel. The shape of the annihilation spectrum is consistent with the assumption that most of the </span>positrons<span> annihilate in a warm and partly ionized medium, although more complicated scenarios are also possible. From the theoretical point of view, a successful model should answer three main questions: (i) physical mechanism(s) responsible for production of positrons, (ii) positrons spatial migration (if any) from the production sites, and (iii) physics of annihilation. Remarkably, despite significant progress provided by </span></span><em>INTEGRAL</em> in the characterization of the Milky Way annihilation emission, the origin of positrons remains an open question. The essence of the problem is the abundance of positron production channels and the uncertainty in the distance positrons can travel before annihilation.</p><p>The spectral-imaging mapping of the Milky Way by <em>INTEGRAL</em><span> provides important constraints on the nature of the Galactic diffuse continuum hard X-rays and soft gamma-rays in the 20 keV – 2  MeV band. Below  ~ 60 keV, numerous unresolved objects (accreting white dwarfs) dominate the flux, but their contribution fades away at higher energies. Models of cosmic-ray induced emission suggest that the dominant diffuse component above  ~ 60 keV (excluding annihilation emission) is inverse Compton scattering<span> from GeV electrons on interstellar radiation fields<span>. Non-thermal bremsstrahlung contributes at a lower level. These models are consistent with the continuum spectrum observed by </span></span></span><em>INTEGRAL</em> and COMPTEL.</p></div>\",\"PeriodicalId\":19718,\"journal\":{\"name\":\"New Astronomy Reviews\",\"volume\":\"90 \",\"pages\":\"Article 101548\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.newar.2020.101548\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387647320300257\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy Reviews","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387647320300257","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 8

摘要

本文综述了电子-正电子湮灭线和x射线两方面的积分结果。银河系的伽马射线漫射。511kev的电子-正电子湮灭线是银河系伽玛射线谱中最显著的光谱特征。从观测的角度来看,INTEGRAL已经提供了对总通量、湮灭线分布形态、谱线形状和三光子湮灭连续体强度的约束。特别是,在基于INTEGRAL数据的湮灭发射的全天空图中,最显著的形态特征是所谓的“凸起”分量,其特征尺寸为~ 6−10°,正电子的湮灭速率为~ 1043s−1。一个更广泛的“圆盘”成分也存在,尽管它的总光度与模型有关。与圆盘相比,凸起部分的亮度与银河系的其他多波长图像形成鲜明对比。湮灭谱由一条以511kev为中心的谱线和正负电子连续体组成。后者的强度表明,大多数湮灭是通过正电子形成通道进行的。湮灭谱的形状与大多数正电子在温暖和部分电离的介质中湮灭的假设是一致的,尽管更复杂的情况也可能存在。从理论的角度来看,一个成功的模型应该回答三个主要问题:(i)负责产生正电子的物理机制,(ii)正电子从产生地点的空间迁移(如果有的话),以及(iii)湮灭的物理学。值得注意的是,尽管INTEGRAL在描述银河系湮灭发射方面取得了重大进展,但正电子的起源仍然是一个悬而未决的问题。问题的实质是正电子产生通道的丰富性和正电子湮灭前运动距离的不确定性。INTEGRAL对银河系的光谱成像映射,对星系漫射连续体硬x射线和软伽玛射线在20kev - 2mev波段的性质提供了重要的约束。在~ 60kev以下,许多未解析的物体(吸积白矮星)主导着通量,但它们的贡献在更高的能量下逐渐消失。宇宙射线诱导发射模型表明,~ 60 keV以上的主要漫射成分(不包括湮灭发射)是GeV电子在星际辐射场上的逆康普顿散射。非热致韧致作用较低。这些模型与INTEGRAL和COMPTEL观测到的连续光谱一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INTEGRAL results on the electron-positron annihilation radiation and X-ray & Gamma-ray diffuse emission of the Milky Way

This review summarizes INTEGRAL results on two topics: the electron-positron annihilation line and X-ray & Gamma-ray diffuse emission of the Milky Way.

The electron-positron annihilation line at 511 keV is the most prominent spectral feature in the gamma-ray spectrum of the Milky Way. From the observational perspective, INTEGRAL has already provided constraints on the total flux, morphology of the annihilation line distribution, the spectral shape of the line and the strength of the three-photon annihilation continuum. In particular, the most salient morphological feature in the all-sky map of the annihilation emission based on INTEGRAL data is the so-called ”Bulge” component, with the characteristic size of 610 and the positrons’ annihilation rate of 1043s1. A more extended ”Disc” component is also present, although its total luminosity is model dependent. The brightness of the Bulge component compared to the Disc is in contrast with other multi-wavelength images of the Milky Way. The annihilation spectrum consists of a line centered at 511 keV and the ortho-positronium continuum. The strength of the latter indicates that the majority of annihilations go via the positronium formation channel. The shape of the annihilation spectrum is consistent with the assumption that most of the positrons annihilate in a warm and partly ionized medium, although more complicated scenarios are also possible. From the theoretical point of view, a successful model should answer three main questions: (i) physical mechanism(s) responsible for production of positrons, (ii) positrons spatial migration (if any) from the production sites, and (iii) physics of annihilation. Remarkably, despite significant progress provided by INTEGRAL in the characterization of the Milky Way annihilation emission, the origin of positrons remains an open question. The essence of the problem is the abundance of positron production channels and the uncertainty in the distance positrons can travel before annihilation.

The spectral-imaging mapping of the Milky Way by INTEGRAL provides important constraints on the nature of the Galactic diffuse continuum hard X-rays and soft gamma-rays in the 20 keV – 2  MeV band. Below  ~ 60 keV, numerous unresolved objects (accreting white dwarfs) dominate the flux, but their contribution fades away at higher energies. Models of cosmic-ray induced emission suggest that the dominant diffuse component above  ~ 60 keV (excluding annihilation emission) is inverse Compton scattering from GeV electrons on interstellar radiation fields. Non-thermal bremsstrahlung contributes at a lower level. These models are consistent with the continuum spectrum observed by INTEGRAL and COMPTEL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Astronomy Reviews
New Astronomy Reviews 地学天文-天文与天体物理
CiteScore
18.60
自引率
1.70%
发文量
7
审稿时长
11.3 weeks
期刊介绍: New Astronomy Reviews publishes review articles in all fields of astronomy and astrophysics: theoretical, observational and instrumental. This international review journal is written for a broad audience of professional astronomers and astrophysicists. The journal covers solar physics, planetary systems, stellar, galactic and extra-galactic astronomy and astrophysics, as well as cosmology. New Astronomy Reviews is also open for proposals covering interdisciplinary and emerging topics such as astrobiology, astroparticle physics, and astrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信