线性化误差的鲁棒扩展卡尔曼滤波

Bokyu Kwon, Soohee Han
{"title":"线性化误差的鲁棒扩展卡尔曼滤波","authors":"Bokyu Kwon, Soohee Han","doi":"10.1109/ICCAS.2015.7364587","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new robust design of the extended Kalman filter(EKF) for nonlinear state estimation problems. In order to give the robustness to the conventional EKF, we consider the linearization error instead of neglecting the nonlinear higher order terms. The linearization errors are represented as a linear function of estimation error and is treated as model uncertainty in linear model. Additionally, we propose the systematic technique for predicting the linearization errors by using the current estimated state and one step ahead one. And, the linearized model and prediction of the linearization errors can be obtained within the Kalman filtering framework.","PeriodicalId":6641,"journal":{"name":"2015 15th International Conference on Control, Automation and Systems (ICCAS)","volume":"7 1","pages":"1485-1487"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A robust extended Kalman filtering for linearization errors\",\"authors\":\"Bokyu Kwon, Soohee Han\",\"doi\":\"10.1109/ICCAS.2015.7364587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new robust design of the extended Kalman filter(EKF) for nonlinear state estimation problems. In order to give the robustness to the conventional EKF, we consider the linearization error instead of neglecting the nonlinear higher order terms. The linearization errors are represented as a linear function of estimation error and is treated as model uncertainty in linear model. Additionally, we propose the systematic technique for predicting the linearization errors by using the current estimated state and one step ahead one. And, the linearized model and prediction of the linearization errors can be obtained within the Kalman filtering framework.\",\"PeriodicalId\":6641,\"journal\":{\"name\":\"2015 15th International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"7 1\",\"pages\":\"1485-1487\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2015.7364587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2015.7364587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文针对非线性状态估计问题,提出了一种新的扩展卡尔曼滤波鲁棒设计。为了使传统EKF具有鲁棒性,我们考虑了线性化误差而不是忽略非线性高阶项。线性化误差表示为估计误差的线性函数,在线性模型中被视为模型不确定性。此外,我们还提出了利用当前估计状态和提前一步预测线性化误差的系统技术。并在卡尔曼滤波框架内得到线性化模型和线性化误差的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust extended Kalman filtering for linearization errors
In this paper, we propose a new robust design of the extended Kalman filter(EKF) for nonlinear state estimation problems. In order to give the robustness to the conventional EKF, we consider the linearization error instead of neglecting the nonlinear higher order terms. The linearization errors are represented as a linear function of estimation error and is treated as model uncertainty in linear model. Additionally, we propose the systematic technique for predicting the linearization errors by using the current estimated state and one step ahead one. And, the linearized model and prediction of the linearization errors can be obtained within the Kalman filtering framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信