{"title":"加拿大拉布拉多峡湾异养细菌丰度与浮游动物放牧的多元控制","authors":"AG Simo-Matchim, Michel Gosselin, C. Belzile","doi":"10.3354/ame01929","DOIUrl":null,"url":null,"abstract":"This study was conducted in 4 Labrador fjords (Nachvak, Saglek, Okak, and Anaktalak) during the summers of 2007 and 2013, early fall 2010, and late fall 2009. Our results show that water temperature combined with the availability of nutrients and organic substrates are the main abiotic factors controlling the abundance of heterotrophic bacteria in Labrador fjords. Bacterivory also played a crucial role, with heterotrophic bacteria exerting a significant bottom-up control on the abundance of heterotrophic nanoflagellates (r = 0.35, p < 0.05) and ciliates (r = 0.70, p < 0.01). During summer 2013, the intrinsic phytoplankton growth rate varied between <0 and 0.64 d-1, with a mean value of 0.36 d-1. The herbivory rate was highly variable, ranging from 0.01 to 0.86 d-1, with a mean value of 0.31 d-1. Grazing mortality was 6-fold higher than phytoplankton growth rate. Mean phytoplankton growth and herbivory rates in Labrador fjords were comparable to the Barents and Bering seas. The intrinsic growth rate of total heterotrophic bacteria ranged between <0 and 0.68 d-1, with a mean value of 0.30 d-1. Bacterivory varied from 0.01 to 0.95 d-1, with a mean of 0.30 d-1. Mortality due to grazing was up to 2.3 times higher than total bacterial growth rate. This study improves our understanding of the factors influencing the dynamics of heterotrophic bacteria and indicates that herbivory and bacterivory exert substantial control on microbial communities in Labrador fjords.","PeriodicalId":8112,"journal":{"name":"Aquatic Microbial Ecology","volume":"10 1","pages":"105-120"},"PeriodicalIF":1.6000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multivariate control of heterotrophic bacterial abundance and zooplankton grazing in Labrador fjords (northeastern Canada)\",\"authors\":\"AG Simo-Matchim, Michel Gosselin, C. Belzile\",\"doi\":\"10.3354/ame01929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study was conducted in 4 Labrador fjords (Nachvak, Saglek, Okak, and Anaktalak) during the summers of 2007 and 2013, early fall 2010, and late fall 2009. Our results show that water temperature combined with the availability of nutrients and organic substrates are the main abiotic factors controlling the abundance of heterotrophic bacteria in Labrador fjords. Bacterivory also played a crucial role, with heterotrophic bacteria exerting a significant bottom-up control on the abundance of heterotrophic nanoflagellates (r = 0.35, p < 0.05) and ciliates (r = 0.70, p < 0.01). During summer 2013, the intrinsic phytoplankton growth rate varied between <0 and 0.64 d-1, with a mean value of 0.36 d-1. The herbivory rate was highly variable, ranging from 0.01 to 0.86 d-1, with a mean value of 0.31 d-1. Grazing mortality was 6-fold higher than phytoplankton growth rate. Mean phytoplankton growth and herbivory rates in Labrador fjords were comparable to the Barents and Bering seas. The intrinsic growth rate of total heterotrophic bacteria ranged between <0 and 0.68 d-1, with a mean value of 0.30 d-1. Bacterivory varied from 0.01 to 0.95 d-1, with a mean of 0.30 d-1. Mortality due to grazing was up to 2.3 times higher than total bacterial growth rate. This study improves our understanding of the factors influencing the dynamics of heterotrophic bacteria and indicates that herbivory and bacterivory exert substantial control on microbial communities in Labrador fjords.\",\"PeriodicalId\":8112,\"journal\":{\"name\":\"Aquatic Microbial Ecology\",\"volume\":\"10 1\",\"pages\":\"105-120\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Microbial Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3354/ame01929\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Microbial Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3354/ame01929","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Multivariate control of heterotrophic bacterial abundance and zooplankton grazing in Labrador fjords (northeastern Canada)
This study was conducted in 4 Labrador fjords (Nachvak, Saglek, Okak, and Anaktalak) during the summers of 2007 and 2013, early fall 2010, and late fall 2009. Our results show that water temperature combined with the availability of nutrients and organic substrates are the main abiotic factors controlling the abundance of heterotrophic bacteria in Labrador fjords. Bacterivory also played a crucial role, with heterotrophic bacteria exerting a significant bottom-up control on the abundance of heterotrophic nanoflagellates (r = 0.35, p < 0.05) and ciliates (r = 0.70, p < 0.01). During summer 2013, the intrinsic phytoplankton growth rate varied between <0 and 0.64 d-1, with a mean value of 0.36 d-1. The herbivory rate was highly variable, ranging from 0.01 to 0.86 d-1, with a mean value of 0.31 d-1. Grazing mortality was 6-fold higher than phytoplankton growth rate. Mean phytoplankton growth and herbivory rates in Labrador fjords were comparable to the Barents and Bering seas. The intrinsic growth rate of total heterotrophic bacteria ranged between <0 and 0.68 d-1, with a mean value of 0.30 d-1. Bacterivory varied from 0.01 to 0.95 d-1, with a mean of 0.30 d-1. Mortality due to grazing was up to 2.3 times higher than total bacterial growth rate. This study improves our understanding of the factors influencing the dynamics of heterotrophic bacteria and indicates that herbivory and bacterivory exert substantial control on microbial communities in Labrador fjords.
期刊介绍:
AME is international and interdisciplinary. It presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see AME 27:209), Opinion Pieces (previously called ''As I See It'') and AME Specials. For details consult the Guidelines for Authors. Papers may be concerned with:
Tolerances and responses of microorganisms to variations in abiotic and biotic components of their environment; microbial life under extreme environmental conditions (climate, temperature, pressure, osmolarity, redox, etc.).
Role of aquatic microorganisms in the production, transformation and decomposition of organic matter; flow patterns of energy and matter as these pass through microorganisms; population dynamics; trophic interrelationships; modelling, both theoretical and via computer simulation, of individual microorganisms and microbial populations; biodiversity.
Absorption and transformation of inorganic material; synthesis and transformation of organic material (autotrophic and heterotrophic); non-genetic and genetic adaptation; behaviour; molecular microbial ecology; symbioses.