{"title":"一类遍历跳跃扩散的不变分布的近似","authors":"A. Gloter, Igor Honoré, D. Loukianova","doi":"10.1051/PS/2020023","DOIUrl":null,"url":null,"abstract":"In this article, we approximate the invariant distributionνof an ergodic Jump Diffusion driven by the sum of a Brownian motion and a Compound Poisson process with sub-Gaussian jumps. We first construct an Euler discretization scheme with decreasing time steps. This scheme is similar to those introduced in Lamberton and PagèsBernoulli8(2002) 367-405. for a Brownian diffusion and extended in F. Panloup,Ann. Appl. Probab.18(2008) 379-426. to a diffusion with Lévy jumps. We obtain a non-asymptoticquasiGaussian (asymptotically Gaussian) concentration bound for the difference between the invariant distribution and the empirical distribution computed with the scheme of decreasing time step along appropriate test functionsfsuch thatf−ν(f) is a coboundary of the infinitesimal generator.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"8 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Approximation of the invariant distribution for a class of ergodic jump diffusions\",\"authors\":\"A. Gloter, Igor Honoré, D. Loukianova\",\"doi\":\"10.1051/PS/2020023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we approximate the invariant distributionνof an ergodic Jump Diffusion driven by the sum of a Brownian motion and a Compound Poisson process with sub-Gaussian jumps. We first construct an Euler discretization scheme with decreasing time steps. This scheme is similar to those introduced in Lamberton and PagèsBernoulli8(2002) 367-405. for a Brownian diffusion and extended in F. Panloup,Ann. Appl. Probab.18(2008) 379-426. to a diffusion with Lévy jumps. We obtain a non-asymptoticquasiGaussian (asymptotically Gaussian) concentration bound for the difference between the invariant distribution and the empirical distribution computed with the scheme of decreasing time step along appropriate test functionsfsuch thatf−ν(f) is a coboundary of the infinitesimal generator.\",\"PeriodicalId\":51249,\"journal\":{\"name\":\"Esaim-Probability and Statistics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Probability and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/PS/2020023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/PS/2020023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Approximation of the invariant distribution for a class of ergodic jump diffusions
In this article, we approximate the invariant distributionνof an ergodic Jump Diffusion driven by the sum of a Brownian motion and a Compound Poisson process with sub-Gaussian jumps. We first construct an Euler discretization scheme with decreasing time steps. This scheme is similar to those introduced in Lamberton and PagèsBernoulli8(2002) 367-405. for a Brownian diffusion and extended in F. Panloup,Ann. Appl. Probab.18(2008) 379-426. to a diffusion with Lévy jumps. We obtain a non-asymptoticquasiGaussian (asymptotically Gaussian) concentration bound for the difference between the invariant distribution and the empirical distribution computed with the scheme of decreasing time step along appropriate test functionsfsuch thatf−ν(f) is a coboundary of the infinitesimal generator.
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.