{"title":"植物群落的物种丰富度和系统发育结构:20年演替","authors":"J. Stadler, S. Klotz, R. Brandl, Sonja Knapp","doi":"10.5194/WE-17-37-2017","DOIUrl":null,"url":null,"abstract":"Abstract. Secondary succession on arable fields is a popular system for studying processes influencing community assembly of plants. During early succession, the arrival and establishment of those propagules that can pass the environmental filters operating at a given site should be among the dominant processes leading to an initial increase in species richness. With ongoing succession, environmental filtering should decrease in relative importance compared to competitive interactions, which then should decrease species richness. Thereby, the phylogenetic structure of communities should change from random or clustered patterns during early succession to overdispersion. Disturbance is supposed to act as an additional filter, causing communities to be phylogenetically clustered. By analysing the species richness and phylogenetic structure of secondary succession in two different regions in Germany with three different disturbance levels each, we tested this general model. Although in one of the regions (Gimritz) we found the expected trajectory of species richness, phylogenetic structure did not follow the expected trend from random or clustered towards overdispersed communities. In the other region (Bayreuth), species richness did not follow the expected trajectory and phylogenetic structure remained clustered over the course of succession. A preliminary analysis of autecological characteristics of the species involved (Ellenberg indicator values) nevertheless showed clear contrasting trends. The idiosyncrasies of successional trajectories across sites might be due to the environmental context, the regional species pool as well as the legacy of former land use reflected in the seed bank.","PeriodicalId":54320,"journal":{"name":"Web Ecology","volume":"5 1","pages":"37-46"},"PeriodicalIF":2.3000,"publicationDate":"2017-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Species richness and phylogenetic structure in plant communities: 20 years of succession\",\"authors\":\"J. Stadler, S. Klotz, R. Brandl, Sonja Knapp\",\"doi\":\"10.5194/WE-17-37-2017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Secondary succession on arable fields is a popular system for studying processes influencing community assembly of plants. During early succession, the arrival and establishment of those propagules that can pass the environmental filters operating at a given site should be among the dominant processes leading to an initial increase in species richness. With ongoing succession, environmental filtering should decrease in relative importance compared to competitive interactions, which then should decrease species richness. Thereby, the phylogenetic structure of communities should change from random or clustered patterns during early succession to overdispersion. Disturbance is supposed to act as an additional filter, causing communities to be phylogenetically clustered. By analysing the species richness and phylogenetic structure of secondary succession in two different regions in Germany with three different disturbance levels each, we tested this general model. Although in one of the regions (Gimritz) we found the expected trajectory of species richness, phylogenetic structure did not follow the expected trend from random or clustered towards overdispersed communities. In the other region (Bayreuth), species richness did not follow the expected trajectory and phylogenetic structure remained clustered over the course of succession. A preliminary analysis of autecological characteristics of the species involved (Ellenberg indicator values) nevertheless showed clear contrasting trends. The idiosyncrasies of successional trajectories across sites might be due to the environmental context, the regional species pool as well as the legacy of former land use reflected in the seed bank.\",\"PeriodicalId\":54320,\"journal\":{\"name\":\"Web Ecology\",\"volume\":\"5 1\",\"pages\":\"37-46\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2017-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.5194/WE-17-37-2017\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.5194/WE-17-37-2017","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Species richness and phylogenetic structure in plant communities: 20 years of succession
Abstract. Secondary succession on arable fields is a popular system for studying processes influencing community assembly of plants. During early succession, the arrival and establishment of those propagules that can pass the environmental filters operating at a given site should be among the dominant processes leading to an initial increase in species richness. With ongoing succession, environmental filtering should decrease in relative importance compared to competitive interactions, which then should decrease species richness. Thereby, the phylogenetic structure of communities should change from random or clustered patterns during early succession to overdispersion. Disturbance is supposed to act as an additional filter, causing communities to be phylogenetically clustered. By analysing the species richness and phylogenetic structure of secondary succession in two different regions in Germany with three different disturbance levels each, we tested this general model. Although in one of the regions (Gimritz) we found the expected trajectory of species richness, phylogenetic structure did not follow the expected trend from random or clustered towards overdispersed communities. In the other region (Bayreuth), species richness did not follow the expected trajectory and phylogenetic structure remained clustered over the course of succession. A preliminary analysis of autecological characteristics of the species involved (Ellenberg indicator values) nevertheless showed clear contrasting trends. The idiosyncrasies of successional trajectories across sites might be due to the environmental context, the regional species pool as well as the legacy of former land use reflected in the seed bank.
Web EcologyAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
4.60
自引率
0.00%
发文量
6
审稿时长
17 weeks
期刊介绍:
Web Ecology (WE) is an open-access journal issued by the European Ecological Federation (EEF) representing the ecological societies within Europe and associated members. Its special value is to serve as a publication forum for national ecological societies that do not maintain their own society journal. Web Ecology publishes papers from all fields of ecology without any geographic restriction. It is a forum to communicate results of experimental, theoretical, and descriptive studies of general interest to an international audience. Original contributions, short communications, and reviews on ecological research on all kinds of organisms and ecosystems are welcome as well as papers that express emerging ideas and concepts with a sound scientific background.