Cox比例风险模型的模型选择策略

Fabiha Binte Farooq, Md Jamil Hasan Karami
{"title":"Cox比例风险模型的模型选择策略","authors":"Fabiha Binte Farooq, Md Jamil Hasan Karami","doi":"10.3329/dujs.v67i2.54582","DOIUrl":null,"url":null,"abstract":"Often in survival regression modelling, not all predictors are relevant to the outcome variable. Discarding such irrelevant variables is very crucial in model selection. In this research, under Cox Proportional Hazards (PH) model we study different model selection criteria including Stepwise selection, Least Absolute Shrinkage and Selection Operator (LASSO), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and the extended versions of AIC and BIC to the Cox model. The simulation study shows that varying censoring proportions and correlation coefficients among the covariates have great impact on the performances of the criteria to identify a true model. In the presence of high correlation among the covariates, the success rate for identifying the true model is higher for LASSO compared to other criteria. The extended version of BIC always shows better result than the traditional BIC. We have also applied these techniques to real world data. \nDhaka Univ. J. Sci. 67(2): 111-116, 2019 (July)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":"2016 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Selection Strategy for Cox Proportional Hazards Model\",\"authors\":\"Fabiha Binte Farooq, Md Jamil Hasan Karami\",\"doi\":\"10.3329/dujs.v67i2.54582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Often in survival regression modelling, not all predictors are relevant to the outcome variable. Discarding such irrelevant variables is very crucial in model selection. In this research, under Cox Proportional Hazards (PH) model we study different model selection criteria including Stepwise selection, Least Absolute Shrinkage and Selection Operator (LASSO), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and the extended versions of AIC and BIC to the Cox model. The simulation study shows that varying censoring proportions and correlation coefficients among the covariates have great impact on the performances of the criteria to identify a true model. In the presence of high correlation among the covariates, the success rate for identifying the true model is higher for LASSO compared to other criteria. The extended version of BIC always shows better result than the traditional BIC. We have also applied these techniques to real world data. \\nDhaka Univ. J. Sci. 67(2): 111-116, 2019 (July)\",\"PeriodicalId\":11280,\"journal\":{\"name\":\"Dhaka University Journal of Science\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dhaka University Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/dujs.v67i2.54582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v67i2.54582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通常在生存回归模型中,并非所有预测因子都与结果变量相关。丢弃这些不相关的变量在模型选择中是非常重要的。在Cox比例风险(PH)模型下,我们研究了不同的模型选择准则,包括逐步选择、最小绝对收缩和选择算子(LASSO)、Akaike信息准则(AIC)、贝叶斯信息准则(BIC)以及AIC和BIC对Cox模型的扩展。仿真研究表明,不同的协变量间的审查比例和相关系数对识别真实模型的准则的性能有很大影响。在协变量之间存在高相关性的情况下,LASSO识别真实模型的成功率高于其他标准。扩展版BIC的效果总是优于传统的BIC。我们还将这些技术应用于真实世界的数据。达卡大学学报(自然科学版),67(2):111-116,2019 (7)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Selection Strategy for Cox Proportional Hazards Model
Often in survival regression modelling, not all predictors are relevant to the outcome variable. Discarding such irrelevant variables is very crucial in model selection. In this research, under Cox Proportional Hazards (PH) model we study different model selection criteria including Stepwise selection, Least Absolute Shrinkage and Selection Operator (LASSO), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and the extended versions of AIC and BIC to the Cox model. The simulation study shows that varying censoring proportions and correlation coefficients among the covariates have great impact on the performances of the criteria to identify a true model. In the presence of high correlation among the covariates, the success rate for identifying the true model is higher for LASSO compared to other criteria. The extended version of BIC always shows better result than the traditional BIC. We have also applied these techniques to real world data. Dhaka Univ. J. Sci. 67(2): 111-116, 2019 (July)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信