火花:一个双赢的数据驱动合同停车共享系统

Xin Zhu, Shuai Wang, Baoshen Guo, Taiwei Ling, Ziyi Zhou, L. Tu, T. He
{"title":"火花:一个双赢的数据驱动合同停车共享系统","authors":"Xin Zhu, Shuai Wang, Baoshen Guo, Taiwei Ling, Ziyi Zhou, L. Tu, T. He","doi":"10.1145/3410530.3414588","DOIUrl":null,"url":null,"abstract":"With a rapid growth of vehicles in modern cities, searching for a parking space becomes difficult for drivers especially in rush hours. To alleviate parking difficulties and make the most of urban parking resources, contract parking sharing services allow drivers to pay for parking under the consent of owners, reaching a win-win situation. Contract parking sharing services, however, have not yet been prevailingly adopted due to the dynamic parking time which leads to uncertainties for sharing. Thanks to the Internet of things technique, most of modern parking lots record vehicles' fine-grained parking data including entry and exit timestamps for billing purposes. Leveraging the parking data, we analyze and exploit available vacant contract parking spaces. We propose SParking, a shared contract parking system with a win-win data-driven scheduling. SParking consists of (i) a parking time prediction model to exploit reliable periods of free parking spaces and (ii) an optimal scheduling model to allocate free parking spaces to drivers. To verify the effectiveness of SParking, we evaluate our design on seven-month real-world parking data involved with 368 parking lots and 14,704 parking spaces in Wuhan, China. The experimental results show that SParking achieves more than 90% of accuracy in parking time prediction and the average utilization rate of contract parking spaces is improved by 35%.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"2016 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SParking: a win-win data-driven contract parking sharing system\",\"authors\":\"Xin Zhu, Shuai Wang, Baoshen Guo, Taiwei Ling, Ziyi Zhou, L. Tu, T. He\",\"doi\":\"10.1145/3410530.3414588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With a rapid growth of vehicles in modern cities, searching for a parking space becomes difficult for drivers especially in rush hours. To alleviate parking difficulties and make the most of urban parking resources, contract parking sharing services allow drivers to pay for parking under the consent of owners, reaching a win-win situation. Contract parking sharing services, however, have not yet been prevailingly adopted due to the dynamic parking time which leads to uncertainties for sharing. Thanks to the Internet of things technique, most of modern parking lots record vehicles' fine-grained parking data including entry and exit timestamps for billing purposes. Leveraging the parking data, we analyze and exploit available vacant contract parking spaces. We propose SParking, a shared contract parking system with a win-win data-driven scheduling. SParking consists of (i) a parking time prediction model to exploit reliable periods of free parking spaces and (ii) an optimal scheduling model to allocate free parking spaces to drivers. To verify the effectiveness of SParking, we evaluate our design on seven-month real-world parking data involved with 368 parking lots and 14,704 parking spaces in Wuhan, China. The experimental results show that SParking achieves more than 90% of accuracy in parking time prediction and the average utilization rate of contract parking spaces is improved by 35%.\",\"PeriodicalId\":7183,\"journal\":{\"name\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410530.3414588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着现代城市中车辆的快速增长,寻找停车位对司机来说变得很困难,尤其是在高峰时段。为了缓解停车困难,最大限度地利用城市停车资源,合同停车共享服务允许司机在车主同意的情况下支付停车费用,实现双赢。然而,由于停车时间是动态的,导致共享的不确定性,合同停车共享服务尚未得到普遍采用。得益于物联网技术,现代停车场大多记录车辆的细粒度停车数据,包括进出时间戳,用于计费。利用停车数据,我们分析和开发可用的空置合同停车位。我们提出了spark,一个共享合同停车系统,具有双赢的数据驱动调度。spark包括:(1)停车时间预测模型,以开发可靠的空闲车位周期;(2)最优调度模型,将空闲车位分配给驾驶员。为了验证spark的有效性,我们对我们的设计进行了为期7个月的真实停车数据评估,涉及中国武汉的368个停车场和14,704个停车位。实验结果表明,该算法的停车时间预测准确率达到90%以上,合同车位的平均利用率提高了35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SParking: a win-win data-driven contract parking sharing system
With a rapid growth of vehicles in modern cities, searching for a parking space becomes difficult for drivers especially in rush hours. To alleviate parking difficulties and make the most of urban parking resources, contract parking sharing services allow drivers to pay for parking under the consent of owners, reaching a win-win situation. Contract parking sharing services, however, have not yet been prevailingly adopted due to the dynamic parking time which leads to uncertainties for sharing. Thanks to the Internet of things technique, most of modern parking lots record vehicles' fine-grained parking data including entry and exit timestamps for billing purposes. Leveraging the parking data, we analyze and exploit available vacant contract parking spaces. We propose SParking, a shared contract parking system with a win-win data-driven scheduling. SParking consists of (i) a parking time prediction model to exploit reliable periods of free parking spaces and (ii) an optimal scheduling model to allocate free parking spaces to drivers. To verify the effectiveness of SParking, we evaluate our design on seven-month real-world parking data involved with 368 parking lots and 14,704 parking spaces in Wuhan, China. The experimental results show that SParking achieves more than 90% of accuracy in parking time prediction and the average utilization rate of contract parking spaces is improved by 35%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信