S. Saha, S. K. Saha, Koushik Dhara, P. Chattopadhyay, A. Sarkar
{"title":"一种新型水溶性无细胞毒性有丝分裂跟踪器覆盖硅量子点的合成与表征","authors":"S. Saha, S. K. Saha, Koushik Dhara, P. Chattopadhyay, A. Sarkar","doi":"10.56042/ijca.v60i1.38694","DOIUrl":null,"url":null,"abstract":"Allyl triphenylphosphonium bromide based mito-tracker capped silicon quantum dot ( Mito-SiQDs ) has been synthesized through an inverse micelle process. It was then fully characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, dynamic light scattering techniques and X-ray photoelectron spectroscopic method. Energy dispersive X-ray spectroscopy analyses of the quantum dots confirm the presence of carbon, silicon, phosphorous and bromine atoms in Mito-SiQDs . Morphological study by transmission electron microscopy experiment showed the formation of the particles of size 11-12 nm of quantum dot dimension. The high negative zeta potential value of –23.7 mV calculated from dynamic light scattering study indicates the high stability of the circumvent agglomeration of Mito-SiQDs . The mito-tracker capped silicon quantum dot has blue emission at 400 nm wavelength upon excitation at 327 nm. Mito-SiQDs has not shown any significant cytotoxic effect with 10 to 50 μL/mL concentration on HeLa cell line for at least up to 12 h of its treatment. The Mito - SiQDs would be useful a possible fluorescent marker to visualize mitochondrial subcellular compartment in living cell through fluorescence imaging study.","PeriodicalId":54992,"journal":{"name":"Indian Journal of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of a new water-soluble non-cytotoxic mito-tracker capped silicon quantum dot\",\"authors\":\"S. Saha, S. K. Saha, Koushik Dhara, P. Chattopadhyay, A. Sarkar\",\"doi\":\"10.56042/ijca.v60i1.38694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Allyl triphenylphosphonium bromide based mito-tracker capped silicon quantum dot ( Mito-SiQDs ) has been synthesized through an inverse micelle process. It was then fully characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, dynamic light scattering techniques and X-ray photoelectron spectroscopic method. Energy dispersive X-ray spectroscopy analyses of the quantum dots confirm the presence of carbon, silicon, phosphorous and bromine atoms in Mito-SiQDs . Morphological study by transmission electron microscopy experiment showed the formation of the particles of size 11-12 nm of quantum dot dimension. The high negative zeta potential value of –23.7 mV calculated from dynamic light scattering study indicates the high stability of the circumvent agglomeration of Mito-SiQDs . The mito-tracker capped silicon quantum dot has blue emission at 400 nm wavelength upon excitation at 327 nm. Mito-SiQDs has not shown any significant cytotoxic effect with 10 to 50 μL/mL concentration on HeLa cell line for at least up to 12 h of its treatment. The Mito - SiQDs would be useful a possible fluorescent marker to visualize mitochondrial subcellular compartment in living cell through fluorescence imaging study.\",\"PeriodicalId\":54992,\"journal\":{\"name\":\"Indian Journal of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.56042/ijca.v60i1.38694\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.56042/ijca.v60i1.38694","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
Synthesis and characterization of a new water-soluble non-cytotoxic mito-tracker capped silicon quantum dot
Allyl triphenylphosphonium bromide based mito-tracker capped silicon quantum dot ( Mito-SiQDs ) has been synthesized through an inverse micelle process. It was then fully characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, dynamic light scattering techniques and X-ray photoelectron spectroscopic method. Energy dispersive X-ray spectroscopy analyses of the quantum dots confirm the presence of carbon, silicon, phosphorous and bromine atoms in Mito-SiQDs . Morphological study by transmission electron microscopy experiment showed the formation of the particles of size 11-12 nm of quantum dot dimension. The high negative zeta potential value of –23.7 mV calculated from dynamic light scattering study indicates the high stability of the circumvent agglomeration of Mito-SiQDs . The mito-tracker capped silicon quantum dot has blue emission at 400 nm wavelength upon excitation at 327 nm. Mito-SiQDs has not shown any significant cytotoxic effect with 10 to 50 μL/mL concentration on HeLa cell line for at least up to 12 h of its treatment. The Mito - SiQDs would be useful a possible fluorescent marker to visualize mitochondrial subcellular compartment in living cell through fluorescence imaging study.