{"title":"分数阶线性时滞系统的解析解及其Ulam-Hyers稳定性","authors":"N. Mahmudov","doi":"10.1155/2022/2661343","DOIUrl":null,"url":null,"abstract":"<jats:p>We introduce the delayed Mittag-Leffler type matrix functions, delayed fractional cosine, and delayed fractional sine and use the Laplace transform to obtain an analytical solution to the IVP for a Hilfer type fractional linear time-delay system <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msubsup>\n <mrow>\n <mi>D</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mi>μ</mi>\n <mo>,</mo>\n <mi>ν</mi>\n </mrow>\n </msubsup>\n <mi>z</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>t</mi>\n </mrow>\n </mfenced>\n <mo>+</mo>\n <mi>A</mi>\n <mi>z</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>t</mi>\n </mrow>\n </mfenced>\n <mo>+</mo>\n <mi>Ω</mi>\n <mi>z</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>t</mi>\n <mo>−</mo>\n <mi>h</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>t</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> of order <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mn>1</mn>\n <mo><</mo>\n <mi>μ</mi>\n <mo><</mo>\n <mn>2</mn>\n </math>\n </jats:inline-formula> and type <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mn>0</mn>\n <mo>≤</mo>\n <mi>ν</mi>\n <mo>≤</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula>, with nonpermutable matrices <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>A</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>Ω</mi>\n </math>\n </jats:inline-formula>. Moreover, we study Ulam-Hyers stability of the Hilfer type fractional linear time-delay system. Obtained results extend those for Caputo and Riemann-Liouville type fractional linear time-delay systems with permutable matrices and new even for these fractional delay systems.</jats:p>","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"2014 1","pages":"2661343:1-2661343:7"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Solution of the Fractional Linear Time-Delay Systems and their Ulam-Hyers Stability\",\"authors\":\"N. Mahmudov\",\"doi\":\"10.1155/2022/2661343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We introduce the delayed Mittag-Leffler type matrix functions, delayed fractional cosine, and delayed fractional sine and use the Laplace transform to obtain an analytical solution to the IVP for a Hilfer type fractional linear time-delay system <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msubsup>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mi>μ</mi>\\n <mo>,</mo>\\n <mi>ν</mi>\\n </mrow>\\n </msubsup>\\n <mi>z</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n <mo>+</mo>\\n <mi>A</mi>\\n <mi>z</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n <mo>+</mo>\\n <mi>Ω</mi>\\n <mi>z</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>t</mi>\\n <mo>−</mo>\\n <mi>h</mi>\\n </mrow>\\n </mfenced>\\n <mo>=</mo>\\n <mi>f</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> of order <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mn>1</mn>\\n <mo><</mo>\\n <mi>μ</mi>\\n <mo><</mo>\\n <mn>2</mn>\\n </math>\\n </jats:inline-formula> and type <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mn>0</mn>\\n <mo>≤</mo>\\n <mi>ν</mi>\\n <mo>≤</mo>\\n <mn>1</mn>\\n </math>\\n </jats:inline-formula>, with nonpermutable matrices <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>A</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>Ω</mi>\\n </math>\\n </jats:inline-formula>. Moreover, we study Ulam-Hyers stability of the Hilfer type fractional linear time-delay system. Obtained results extend those for Caputo and Riemann-Liouville type fractional linear time-delay systems with permutable matrices and new even for these fractional delay systems.</jats:p>\",\"PeriodicalId\":14766,\"journal\":{\"name\":\"J. Appl. Math.\",\"volume\":\"2014 1\",\"pages\":\"2661343:1-2661343:7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2661343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/2661343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们引入了延迟mittagg - leffler型矩阵函数、延迟分数阶余弦函数和延迟分数阶正弦函数,并利用拉普拉斯变换得到了Hilfer型分数阶线性时滞系统的IVP的解析解。T μ,ν z t + A z t + Ωzt−h = f t(1阶μ 2和0型≤ν≤1;不可变矩阵A和Ω。此外,我们研究了Hilfer型分数阶线性时滞系统的Ulam-Hyers稳定性。所得结果推广了具有可变矩阵的Caputo型和Riemann-Liouville型分数阶线性时滞系统的结果,并对这些分数阶时滞系统给出了新的结果。
Analytical Solution of the Fractional Linear Time-Delay Systems and their Ulam-Hyers Stability
We introduce the delayed Mittag-Leffler type matrix functions, delayed fractional cosine, and delayed fractional sine and use the Laplace transform to obtain an analytical solution to the IVP for a Hilfer type fractional linear time-delay system of order and type , with nonpermutable matrices and . Moreover, we study Ulam-Hyers stability of the Hilfer type fractional linear time-delay system. Obtained results extend those for Caputo and Riemann-Liouville type fractional linear time-delay systems with permutable matrices and new even for these fractional delay systems.