在$t$排序的排列中下降

IF 0.4 Q4 MATHEMATICS, APPLIED
Colin Defant
{"title":"在$t$排序的排列中下降","authors":"Colin Defant","doi":"10.4310/joc.2020.v11.n3.a5","DOIUrl":null,"url":null,"abstract":"Let $s$ denote West's stack-sorting map. A permutation is called $t-\\textit{sorted}$ if it is of the form $s^t(\\mu)$ for some permutation $\\mu$. We prove that the maximum number of descents that a $t$-sorted permutation of length $n$ can have is $\\left\\lfloor\\frac{n-t}{2}\\right\\rfloor$. When $n$ and $t$ have the same parity and $t\\geq 2$, we give a simple characterization of those $t$-sorted permutations in $S_n$ that attain this maximum. In particular, the number of such permutations is $(n-t-1)!!$.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"4 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Descents in $t$-sorted permutations\",\"authors\":\"Colin Defant\",\"doi\":\"10.4310/joc.2020.v11.n3.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $s$ denote West's stack-sorting map. A permutation is called $t-\\\\textit{sorted}$ if it is of the form $s^t(\\\\mu)$ for some permutation $\\\\mu$. We prove that the maximum number of descents that a $t$-sorted permutation of length $n$ can have is $\\\\left\\\\lfloor\\\\frac{n-t}{2}\\\\right\\\\rfloor$. When $n$ and $t$ have the same parity and $t\\\\geq 2$, we give a simple characterization of those $t$-sorted permutations in $S_n$ that attain this maximum. In particular, the number of such permutations is $(n-t-1)!!$.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2020.v11.n3.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2020.v11.n3.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

摘要

设$s$表示West的堆栈排序图。如果某种排列的形式为$s^t(\mu)$$\mu$,则该排列称为$t-\textit{sorted}$。我们证明了一个长度为$n$的$t$排序的排列所能具有的最大下降数为$\left\lfloor\frac{n-t}{2}\right\rfloor$。当$n$和$t$具有相同的奇偶性和$t\geq 2$时,我们给出了$S_n$中达到这个最大值的那些以$t$排序的排列的简单表征。具体来说,这种排列的数量是$(n-t-1)!!$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Descents in $t$-sorted permutations
Let $s$ denote West's stack-sorting map. A permutation is called $t-\textit{sorted}$ if it is of the form $s^t(\mu)$ for some permutation $\mu$. We prove that the maximum number of descents that a $t$-sorted permutation of length $n$ can have is $\left\lfloor\frac{n-t}{2}\right\rfloor$. When $n$ and $t$ have the same parity and $t\geq 2$, we give a simple characterization of those $t$-sorted permutations in $S_n$ that attain this maximum. In particular, the number of such permutations is $(n-t-1)!!$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信