一种求解时间表问题的智能技术

A. El-Dhshan, H. Zaher, Naglaa Ragaa
{"title":"一种求解时间表问题的智能技术","authors":"A. El-Dhshan, H. Zaher, Naglaa Ragaa","doi":"10.51201/JUSST/21/04251","DOIUrl":null,"url":null,"abstract":"Timetabling problem is complex combinatorial resources allocation problems. There are two hard and soft constraints to be satisfied. The timetable is feasible if all hard constraints are satisfied. Besides, satisfying more of the soft constraints produces a high-quality timetable. Crow Search Algorithm (CSA) as an intelligence technique presents for solving timetable problem. CSA like all meta-heuristic optimization techniques is a nature-inspire of intelligent behavior of crows. The proposed CSA tested using the well-known benchmark of hard timetabling datasets (hdtt). Taguchi’s method used to tune the best parameter combinations for the factors and levels. The tuned parameters of CSA are applied on datasets in separate experiment. The results show that the proposed CSA is superior to generate solutions in reasonable CPU time when compared with other literature techniques.","PeriodicalId":17520,"journal":{"name":"Journal of the University of Shanghai for Science and Technology","volume":"13 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Technique for Solving Timetable Problem\",\"authors\":\"A. El-Dhshan, H. Zaher, Naglaa Ragaa\",\"doi\":\"10.51201/JUSST/21/04251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Timetabling problem is complex combinatorial resources allocation problems. There are two hard and soft constraints to be satisfied. The timetable is feasible if all hard constraints are satisfied. Besides, satisfying more of the soft constraints produces a high-quality timetable. Crow Search Algorithm (CSA) as an intelligence technique presents for solving timetable problem. CSA like all meta-heuristic optimization techniques is a nature-inspire of intelligent behavior of crows. The proposed CSA tested using the well-known benchmark of hard timetabling datasets (hdtt). Taguchi’s method used to tune the best parameter combinations for the factors and levels. The tuned parameters of CSA are applied on datasets in separate experiment. The results show that the proposed CSA is superior to generate solutions in reasonable CPU time when compared with other literature techniques.\",\"PeriodicalId\":17520,\"journal\":{\"name\":\"Journal of the University of Shanghai for Science and Technology\",\"volume\":\"13 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the University of Shanghai for Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51201/JUSST/21/04251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the University of Shanghai for Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51201/JUSST/21/04251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

排班问题是一个复杂的组合资源分配问题。需要满足两个硬约束和软约束。如果所有硬约束条件都得到满足,时间表是可行的。此外,满足更多的软约束会产生高质量的时间表。乌鸦搜索算法(CSA)作为求解时刻表问题的一种智能技术被提出。像所有的元启发式优化技术一样,CSA是一种自然启发的乌鸦智能行为。提出的CSA使用众所周知的硬时间表数据集(hdtt)基准进行测试。田口的方法用于调整因子和水平的最佳参数组合。调整后的CSA参数分别应用于不同的实验数据集上。结果表明,与其他文献技术相比,所提出的CSA算法在合理的CPU时间内生成解具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Intelligent Technique for Solving Timetable Problem
Timetabling problem is complex combinatorial resources allocation problems. There are two hard and soft constraints to be satisfied. The timetable is feasible if all hard constraints are satisfied. Besides, satisfying more of the soft constraints produces a high-quality timetable. Crow Search Algorithm (CSA) as an intelligence technique presents for solving timetable problem. CSA like all meta-heuristic optimization techniques is a nature-inspire of intelligent behavior of crows. The proposed CSA tested using the well-known benchmark of hard timetabling datasets (hdtt). Taguchi’s method used to tune the best parameter combinations for the factors and levels. The tuned parameters of CSA are applied on datasets in separate experiment. The results show that the proposed CSA is superior to generate solutions in reasonable CPU time when compared with other literature techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信