奇偶交替排列和序列

Augustine O. Munagi
{"title":"奇偶交替排列和序列","authors":"Augustine O. Munagi","doi":"10.2478/s11533-014-0421-2","DOIUrl":null,"url":null,"abstract":"The study of parity-alternating permutations of {1, 2, … n} is extended to permutations containing a prescribed number of parity successions — adjacent pairs of elements of the same parity. Several enumeration formulae are computed for permutations containing a given number of parity successions, in conjunction with further parity and length restrictions. The objects are classified using direct construction and elementary combinatorial techniques. Analogous results are derived for circular permutations.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"14 1","pages":"1390-1402"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Parity-alternating permutations and successions\",\"authors\":\"Augustine O. Munagi\",\"doi\":\"10.2478/s11533-014-0421-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of parity-alternating permutations of {1, 2, … n} is extended to permutations containing a prescribed number of parity successions — adjacent pairs of elements of the same parity. Several enumeration formulae are computed for permutations containing a given number of parity successions, in conjunction with further parity and length restrictions. The objects are classified using direct construction and elementary combinatorial techniques. Analogous results are derived for circular permutations.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"14 1\",\"pages\":\"1390-1402\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-014-0421-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-014-0421-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

将{1,2,…n}的奇偶交替置换的研究推广到包含一定数目的奇偶序列的置换——相同奇偶的相邻元素对。对于包含给定数量的奇偶序列的排列,结合进一步的奇偶和长度限制,计算了几个枚举公式。使用直接构造和初等组合技术对对象进行分类。类似的结果也适用于圆形排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parity-alternating permutations and successions
The study of parity-alternating permutations of {1, 2, … n} is extended to permutations containing a prescribed number of parity successions — adjacent pairs of elements of the same parity. Several enumeration formulae are computed for permutations containing a given number of parity successions, in conjunction with further parity and length restrictions. The objects are classified using direct construction and elementary combinatorial techniques. Analogous results are derived for circular permutations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信