Butembu Sabastine, Osamong Gideon Akou, Kamweru Paul Kuria, Gichumbi Joel Mwangi, N. Francis
{"title":"溶胶-凝胶合成铝掺杂锌钴铁氧体纳米颗粒的光学和扫描开尔文探针微观表征","authors":"Butembu Sabastine, Osamong Gideon Akou, Kamweru Paul Kuria, Gichumbi Joel Mwangi, N. Francis","doi":"10.5897/ijps2020.4894","DOIUrl":null,"url":null,"abstract":"In this work, Zn1-xCoFe2AlxO4 (x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) ferrites were synthesized using the sol-gel method. XRD analysis was done and confirmed the formation of spinel structure, where the particle size and lattice parameter decrease with increase of aluminum concentration. This may be attributed to a shift of the bigger Al3+ ions, from the tetrahedral to the octahedral sites, interchanging with smaller Zn2+ ions and that consequently result to a decreased unit cell size. The Scanning Kelvin Probe Microscopy (SKPM) showed that the work function average ranges between 200 and 680 mV for the different concentration of aluminum in the samples. Fractural analysis indicated a small fracture between the samples of different ratios which can be attributed to the method used to prepare as well as the shifting of the Al3+ ions. The UV-vis spectroscopy showed variation of energy gap with increasing aluminum concentration, and an increased optical absorbance as the Al3+ ions were introduced in the samples. \n \n Key words: Scanning kelvins probe microscopy, UV-vis spectroscopy, work function, and absorbance.","PeriodicalId":14294,"journal":{"name":"International Journal of Physical Sciences","volume":"6 1","pages":"151-161"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical and scanning kelvin probe microscopic characterization of sol-gel synthesized aluminum doped zinc cobalt ferrite nanoparticles\",\"authors\":\"Butembu Sabastine, Osamong Gideon Akou, Kamweru Paul Kuria, Gichumbi Joel Mwangi, N. Francis\",\"doi\":\"10.5897/ijps2020.4894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, Zn1-xCoFe2AlxO4 (x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) ferrites were synthesized using the sol-gel method. XRD analysis was done and confirmed the formation of spinel structure, where the particle size and lattice parameter decrease with increase of aluminum concentration. This may be attributed to a shift of the bigger Al3+ ions, from the tetrahedral to the octahedral sites, interchanging with smaller Zn2+ ions and that consequently result to a decreased unit cell size. The Scanning Kelvin Probe Microscopy (SKPM) showed that the work function average ranges between 200 and 680 mV for the different concentration of aluminum in the samples. Fractural analysis indicated a small fracture between the samples of different ratios which can be attributed to the method used to prepare as well as the shifting of the Al3+ ions. The UV-vis spectroscopy showed variation of energy gap with increasing aluminum concentration, and an increased optical absorbance as the Al3+ ions were introduced in the samples. \\n \\n Key words: Scanning kelvins probe microscopy, UV-vis spectroscopy, work function, and absorbance.\",\"PeriodicalId\":14294,\"journal\":{\"name\":\"International Journal of Physical Sciences\",\"volume\":\"6 1\",\"pages\":\"151-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5897/ijps2020.4894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/ijps2020.4894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical and scanning kelvin probe microscopic characterization of sol-gel synthesized aluminum doped zinc cobalt ferrite nanoparticles
In this work, Zn1-xCoFe2AlxO4 (x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) ferrites were synthesized using the sol-gel method. XRD analysis was done and confirmed the formation of spinel structure, where the particle size and lattice parameter decrease with increase of aluminum concentration. This may be attributed to a shift of the bigger Al3+ ions, from the tetrahedral to the octahedral sites, interchanging with smaller Zn2+ ions and that consequently result to a decreased unit cell size. The Scanning Kelvin Probe Microscopy (SKPM) showed that the work function average ranges between 200 and 680 mV for the different concentration of aluminum in the samples. Fractural analysis indicated a small fracture between the samples of different ratios which can be attributed to the method used to prepare as well as the shifting of the Al3+ ions. The UV-vis spectroscopy showed variation of energy gap with increasing aluminum concentration, and an increased optical absorbance as the Al3+ ions were introduced in the samples.
Key words: Scanning kelvins probe microscopy, UV-vis spectroscopy, work function, and absorbance.