具有Gödel-type和对偶Gödel-type否定的Kleene强3值逻辑变体的自然隐含展开

Q1 Arts and Humanities
G. Robles, J. Méndez
{"title":"具有Gödel-type和对偶Gödel-type否定的Kleene强3值逻辑变体的自然隐含展开","authors":"G. Robles, J. Méndez","doi":"10.1080/11663081.2021.1948285","DOIUrl":null,"url":null,"abstract":"Let MK3 and MK3 be Kleene's strong 3-valued matrix with only one and two designated values, respectively. Next, let MK3 (resp., MK3 ) be defined exactly as MK3 (resp., MK3 ), except that the characteristic Łukasiewicz-type negation of Kleene's strong 3-valued matrix is replaced by a ‘Gödel-type’ negation (resp., ‘dual Gödel-type’ negation). The aim of this paper is to axiomatize the logics determined by all natural implicative expansions of MK3 and MK3 . The axiomatic formulations are defined by using a ‘two-valued’ Belnap-Dunn semantics.","PeriodicalId":38573,"journal":{"name":"Journal of Applied Non-Classical Logics","volume":"2010 1","pages":"130 - 153"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Natural implicative expansions of variants of Kleene's strong 3-valued logic with Gödel-type and dual Gödel-type negation\",\"authors\":\"G. Robles, J. Méndez\",\"doi\":\"10.1080/11663081.2021.1948285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let MK3 and MK3 be Kleene's strong 3-valued matrix with only one and two designated values, respectively. Next, let MK3 (resp., MK3 ) be defined exactly as MK3 (resp., MK3 ), except that the characteristic Łukasiewicz-type negation of Kleene's strong 3-valued matrix is replaced by a ‘Gödel-type’ negation (resp., ‘dual Gödel-type’ negation). The aim of this paper is to axiomatize the logics determined by all natural implicative expansions of MK3 and MK3 . The axiomatic formulations are defined by using a ‘two-valued’ Belnap-Dunn semantics.\",\"PeriodicalId\":38573,\"journal\":{\"name\":\"Journal of Applied Non-Classical Logics\",\"volume\":\"2010 1\",\"pages\":\"130 - 153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Non-Classical Logics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/11663081.2021.1948285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Non-Classical Logics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11663081.2021.1948285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

摘要

设MK3和MK3为Kleene强3值矩阵,分别只有一个和两个指定值。接下来,让MK3 (resp.), MK3)被精确地定义为MK3(参见。, MK3),只是Kleene强3值矩阵的特征Łukasiewicz-type否定被“Gödel-type”否定所取代(见1)。(' dual Gödel-type '否定)。本文的目的是公理化由MK3和MK3的所有自然隐含展开式所决定的逻辑。公理化公式是用“二值”Belnap-Dunn语义定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural implicative expansions of variants of Kleene's strong 3-valued logic with Gödel-type and dual Gödel-type negation
Let MK3 and MK3 be Kleene's strong 3-valued matrix with only one and two designated values, respectively. Next, let MK3 (resp., MK3 ) be defined exactly as MK3 (resp., MK3 ), except that the characteristic Łukasiewicz-type negation of Kleene's strong 3-valued matrix is replaced by a ‘Gödel-type’ negation (resp., ‘dual Gödel-type’ negation). The aim of this paper is to axiomatize the logics determined by all natural implicative expansions of MK3 and MK3 . The axiomatic formulations are defined by using a ‘two-valued’ Belnap-Dunn semantics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Non-Classical Logics
Journal of Applied Non-Classical Logics Arts and Humanities-Philosophy
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信