{"title":"具有Gödel-type和对偶Gödel-type否定的Kleene强3值逻辑变体的自然隐含展开","authors":"G. Robles, J. Méndez","doi":"10.1080/11663081.2021.1948285","DOIUrl":null,"url":null,"abstract":"Let MK3 and MK3 be Kleene's strong 3-valued matrix with only one and two designated values, respectively. Next, let MK3 (resp., MK3 ) be defined exactly as MK3 (resp., MK3 ), except that the characteristic Łukasiewicz-type negation of Kleene's strong 3-valued matrix is replaced by a ‘Gödel-type’ negation (resp., ‘dual Gödel-type’ negation). The aim of this paper is to axiomatize the logics determined by all natural implicative expansions of MK3 and MK3 . The axiomatic formulations are defined by using a ‘two-valued’ Belnap-Dunn semantics.","PeriodicalId":38573,"journal":{"name":"Journal of Applied Non-Classical Logics","volume":"2010 1","pages":"130 - 153"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Natural implicative expansions of variants of Kleene's strong 3-valued logic with Gödel-type and dual Gödel-type negation\",\"authors\":\"G. Robles, J. Méndez\",\"doi\":\"10.1080/11663081.2021.1948285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let MK3 and MK3 be Kleene's strong 3-valued matrix with only one and two designated values, respectively. Next, let MK3 (resp., MK3 ) be defined exactly as MK3 (resp., MK3 ), except that the characteristic Łukasiewicz-type negation of Kleene's strong 3-valued matrix is replaced by a ‘Gödel-type’ negation (resp., ‘dual Gödel-type’ negation). The aim of this paper is to axiomatize the logics determined by all natural implicative expansions of MK3 and MK3 . The axiomatic formulations are defined by using a ‘two-valued’ Belnap-Dunn semantics.\",\"PeriodicalId\":38573,\"journal\":{\"name\":\"Journal of Applied Non-Classical Logics\",\"volume\":\"2010 1\",\"pages\":\"130 - 153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Non-Classical Logics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/11663081.2021.1948285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Non-Classical Logics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11663081.2021.1948285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Natural implicative expansions of variants of Kleene's strong 3-valued logic with Gödel-type and dual Gödel-type negation
Let MK3 and MK3 be Kleene's strong 3-valued matrix with only one and two designated values, respectively. Next, let MK3 (resp., MK3 ) be defined exactly as MK3 (resp., MK3 ), except that the characteristic Łukasiewicz-type negation of Kleene's strong 3-valued matrix is replaced by a ‘Gödel-type’ negation (resp., ‘dual Gödel-type’ negation). The aim of this paper is to axiomatize the logics determined by all natural implicative expansions of MK3 and MK3 . The axiomatic formulations are defined by using a ‘two-valued’ Belnap-Dunn semantics.