多项式的皮莱猜想

Pub Date : 2022-01-26 DOI:10.3336/gm.58.1.05
Sebastian Heintze
{"title":"多项式的皮莱猜想","authors":"Sebastian Heintze","doi":"10.3336/gm.58.1.05","DOIUrl":null,"url":null,"abstract":"In this paper we study the polynomial version of Pillai's conjecture on the exponential Diophantine equation\n \n -17ex p^n - q^m = f.\n\n We prove that for any non-constant polynomial \\( f \\) there are only finitely many quadruples \\( (n,m,\\deg p,\\deg q) \\) consisting of integers \\( n,m \\geq 2 \\) and non-constant polynomials \\( p,q \\) such that Pillai's equation holds.\n Moreover, we will give some examples that there can still be infinitely many possibilities for the polynomials \\( p,q \\).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pillai's conjecture for polynomials\",\"authors\":\"Sebastian Heintze\",\"doi\":\"10.3336/gm.58.1.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the polynomial version of Pillai's conjecture on the exponential Diophantine equation\\n \\n -17ex p^n - q^m = f.\\n\\n We prove that for any non-constant polynomial \\\\( f \\\\) there are only finitely many quadruples \\\\( (n,m,\\\\deg p,\\\\deg q) \\\\) consisting of integers \\\\( n,m \\\\geq 2 \\\\) and non-constant polynomials \\\\( p,q \\\\) such that Pillai's equation holds.\\n Moreover, we will give some examples that there can still be infinitely many possibilities for the polynomials \\\\( p,q \\\\).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.58.1.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.58.1.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了指数丢番图方程-17ex p^n - q^m = f上Pillai猜想的多项式版本。我们证明了对于任意非常多项式\( f \),只有有限多个四元组\( (n,m,\deg p,\deg q) \)由整数\( n,m \geq 2 \)和非常多项式\( p,q \)组成,使得Pillai方程成立。此外,我们将给出一些例子,说明多项式仍然有无限多种可能性\( p,q \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Pillai's conjecture for polynomials
In this paper we study the polynomial version of Pillai's conjecture on the exponential Diophantine equation -17ex p^n - q^m = f. We prove that for any non-constant polynomial \( f \) there are only finitely many quadruples \( (n,m,\deg p,\deg q) \) consisting of integers \( n,m \geq 2 \) and non-constant polynomials \( p,q \) such that Pillai's equation holds. Moreover, we will give some examples that there can still be infinitely many possibilities for the polynomials \( p,q \).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信