{"title":"从大气CO2、δ13C和O2/N2观测资料重建最近的碳循环*","authors":"P. Rayner, I. Enting, R. Francey, R. Langenfelds","doi":"10.3402/TELLUSB.V51I2.16273","DOIUrl":null,"url":null,"abstract":"This paper presents an attempt to recover the space–time structure of fluxes of CO 2 to the atmosphere over the period 1980–1995 from atmospheric concentration and isotopic composition measurements. The technique used is Bayesian synthesis inversion in which sources are aggregated into large regions and their strengths adjusted to match observed concentrations. The sources are constrained by prior estimates based on a priori knowledge. The input data are atmospheric CO 2 concentration measurements from the NOAA/CMDL network, 13 CO 2 composition and O2/N2 ratios measured at Cape Grim, Tasmania by CSIRO Atmospheric Research. The primary findings are a relatively large long-term mean ocean uptake of CO 2 , and seasonal fluxes over land with similar integrated magnitude, but smaller peak amplitude, compared with those derived by Fung and co-workers. Predicted interannual variability is smaller than reported in previous studies. The largest contributor is the oceanic tropics where fluxes vary on the time scale of the southern oscillation. There is evidence of longer time-scale variation in land uptake. Increases in ocean uptake and northern land uptake in the early 1990s are consistent with a response to the Mt. Pinatubo eruption. DOI: 10.1034/j.1600-0889.1999.t01-1-00008.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":"2 1","pages":"213-232"},"PeriodicalIF":2.3000,"publicationDate":"1999-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"437","resultStr":"{\"title\":\"Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations*\",\"authors\":\"P. Rayner, I. Enting, R. Francey, R. Langenfelds\",\"doi\":\"10.3402/TELLUSB.V51I2.16273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an attempt to recover the space–time structure of fluxes of CO 2 to the atmosphere over the period 1980–1995 from atmospheric concentration and isotopic composition measurements. The technique used is Bayesian synthesis inversion in which sources are aggregated into large regions and their strengths adjusted to match observed concentrations. The sources are constrained by prior estimates based on a priori knowledge. The input data are atmospheric CO 2 concentration measurements from the NOAA/CMDL network, 13 CO 2 composition and O2/N2 ratios measured at Cape Grim, Tasmania by CSIRO Atmospheric Research. The primary findings are a relatively large long-term mean ocean uptake of CO 2 , and seasonal fluxes over land with similar integrated magnitude, but smaller peak amplitude, compared with those derived by Fung and co-workers. Predicted interannual variability is smaller than reported in previous studies. The largest contributor is the oceanic tropics where fluxes vary on the time scale of the southern oscillation. There is evidence of longer time-scale variation in land uptake. Increases in ocean uptake and northern land uptake in the early 1990s are consistent with a response to the Mt. Pinatubo eruption. DOI: 10.1034/j.1600-0889.1999.t01-1-00008.x\",\"PeriodicalId\":54432,\"journal\":{\"name\":\"Tellus Series B-Chemical and Physical Meteorology\",\"volume\":\"2 1\",\"pages\":\"213-232\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"1999-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"437\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tellus Series B-Chemical and Physical Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3402/TELLUSB.V51I2.16273\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3402/TELLUSB.V51I2.16273","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations*
This paper presents an attempt to recover the space–time structure of fluxes of CO 2 to the atmosphere over the period 1980–1995 from atmospheric concentration and isotopic composition measurements. The technique used is Bayesian synthesis inversion in which sources are aggregated into large regions and their strengths adjusted to match observed concentrations. The sources are constrained by prior estimates based on a priori knowledge. The input data are atmospheric CO 2 concentration measurements from the NOAA/CMDL network, 13 CO 2 composition and O2/N2 ratios measured at Cape Grim, Tasmania by CSIRO Atmospheric Research. The primary findings are a relatively large long-term mean ocean uptake of CO 2 , and seasonal fluxes over land with similar integrated magnitude, but smaller peak amplitude, compared with those derived by Fung and co-workers. Predicted interannual variability is smaller than reported in previous studies. The largest contributor is the oceanic tropics where fluxes vary on the time scale of the southern oscillation. There is evidence of longer time-scale variation in land uptake. Increases in ocean uptake and northern land uptake in the early 1990s are consistent with a response to the Mt. Pinatubo eruption. DOI: 10.1034/j.1600-0889.1999.t01-1-00008.x
期刊介绍:
Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.