V. N. Shchennikov, Yelena V. Shchennikova, S. A. Sannikov
{"title":"基于指标收益构建风险管理策略的神经网络模型与ols回归模型的比较","authors":"V. N. Shchennikov, Yelena V. Shchennikova, S. A. Sannikov","doi":"10.15507/0236-2910.027.201701.012-020","DOIUrl":null,"url":null,"abstract":"Введение. Модели с нейронной сетью и OLS-регрессией используются на рынке акций и включают в себя переменные, описывающие состояние данного рынка. Одним из возможных способов определения таких зависимостей является их кластеризация с помощью анализа главных компонент. Цель исследования – раскрыть суть двух перспективных эвристических подходов к оценке динамики функциональных связей между доходами на рынке акций и переменных, описывающих состояние рынка. Материалы и методы. Материалами для исследования послужили модели с непрерывной сетью и OLS-регрессия в пространстве стратегий управления доходами, а также математическая статистика. Результаты исследования. Известно, что суть установления функциональных связей между доходами на рынке акций состоит в их кластеризации с использованием линейного или нелинейного анализа главных компонент состояния рынка. В данной работе приводится анализ двух перспективных эвристических подходов к оценке динамики функциональных связей между доходами на рынке акций и переменными, описывающими состояние рынка. Обсуждение и заключения. В результате исследования было установлено, что полученные нейронные сети имеют преимущество перед более традиционными методами в случаях, когда невозможно точно описать имеющиеся связи, но возможно выделить некоторый набор показателей, характеризующий исследуемое явление. И даже в самой неблагоприятной ситуации MBPN-сеть может превосходить метод OLS-регрессии.","PeriodicalId":53930,"journal":{"name":"Mordovia University Bulletin","volume":"2016 1","pages":"12-20"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"COMPARISON OF MODELS WITH NEURAL NETWORK AND OLS-REGRESSION IN CONSTRUCTING THE RISK MANAGEMENT STRATE GY AGAINST THE INCOME ACCORDING TO INDEX\",\"authors\":\"V. N. Shchennikov, Yelena V. Shchennikova, S. A. Sannikov\",\"doi\":\"10.15507/0236-2910.027.201701.012-020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Введение. Модели с нейронной сетью и OLS-регрессией используются на рынке акций и включают в себя переменные, описывающие состояние данного рынка. Одним из возможных способов определения таких зависимостей является их кластеризация с помощью анализа главных компонент. Цель исследования – раскрыть суть двух перспективных эвристических подходов к оценке динамики функциональных связей между доходами на рынке акций и переменных, описывающих состояние рынка. Материалы и методы. Материалами для исследования послужили модели с непрерывной сетью и OLS-регрессия в пространстве стратегий управления доходами, а также математическая статистика. Результаты исследования. Известно, что суть установления функциональных связей между доходами на рынке акций состоит в их кластеризации с использованием линейного или нелинейного анализа главных компонент состояния рынка. В данной работе приводится анализ двух перспективных эвристических подходов к оценке динамики функциональных связей между доходами на рынке акций и переменными, описывающими состояние рынка. Обсуждение и заключения. В результате исследования было установлено, что полученные нейронные сети имеют преимущество перед более традиционными методами в случаях, когда невозможно точно описать имеющиеся связи, но возможно выделить некоторый набор показателей, характеризующий исследуемое явление. И даже в самой неблагоприятной ситуации MBPN-сеть может превосходить метод OLS-регрессии.\",\"PeriodicalId\":53930,\"journal\":{\"name\":\"Mordovia University Bulletin\",\"volume\":\"2016 1\",\"pages\":\"12-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mordovia University Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15507/0236-2910.027.201701.012-020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mordovia University Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/0236-2910.027.201701.012-020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COMPARISON OF MODELS WITH NEURAL NETWORK AND OLS-REGRESSION IN CONSTRUCTING THE RISK MANAGEMENT STRATE GY AGAINST THE INCOME ACCORDING TO INDEX
Введение. Модели с нейронной сетью и OLS-регрессией используются на рынке акций и включают в себя переменные, описывающие состояние данного рынка. Одним из возможных способов определения таких зависимостей является их кластеризация с помощью анализа главных компонент. Цель исследования – раскрыть суть двух перспективных эвристических подходов к оценке динамики функциональных связей между доходами на рынке акций и переменных, описывающих состояние рынка. Материалы и методы. Материалами для исследования послужили модели с непрерывной сетью и OLS-регрессия в пространстве стратегий управления доходами, а также математическая статистика. Результаты исследования. Известно, что суть установления функциональных связей между доходами на рынке акций состоит в их кластеризации с использованием линейного или нелинейного анализа главных компонент состояния рынка. В данной работе приводится анализ двух перспективных эвристических подходов к оценке динамики функциональных связей между доходами на рынке акций и переменными, описывающими состояние рынка. Обсуждение и заключения. В результате исследования было установлено, что полученные нейронные сети имеют преимущество перед более традиционными методами в случаях, когда невозможно точно описать имеющиеся связи, но возможно выделить некоторый набор показателей, характеризующий исследуемое явление. И даже в самой неблагоприятной ситуации MBPN-сеть может превосходить метод OLS-регрессии.