{"title":"2-banach空间中三次泛函方程稳定性的不动点方法","authors":"K. Y. N. Sayar, A. Bergam","doi":"10.22190/fumi210426017s","DOIUrl":null,"url":null,"abstract":"In this paper, we prove a new type of stability and hyperstability results forthe following cubic functional equationf (2x + y) + f (2x - y) = 2f (x + y) + 2f (x - y) + 12f(x)in 2-Banach spaces using fixed point approach.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"120 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A FIXED POINT APPROACH TO STABILITY OF A CUBIC FUNCTIONAL EQUATION IN 2-BANACH SPACES\",\"authors\":\"K. Y. N. Sayar, A. Bergam\",\"doi\":\"10.22190/fumi210426017s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove a new type of stability and hyperstability results forthe following cubic functional equationf (2x + y) + f (2x - y) = 2f (x + y) + 2f (x - y) + 12f(x)in 2-Banach spaces using fixed point approach.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fumi210426017s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi210426017s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A FIXED POINT APPROACH TO STABILITY OF A CUBIC FUNCTIONAL EQUATION IN 2-BANACH SPACES
In this paper, we prove a new type of stability and hyperstability results forthe following cubic functional equationf (2x + y) + f (2x - y) = 2f (x + y) + 2f (x - y) + 12f(x)in 2-Banach spaces using fixed point approach.