{"title":"完备覆盖图和Cohen-Macaulay环图","authors":"Iván D. Castrillón, E. Reyes","doi":"10.1216/jca.2021.13.461","DOIUrl":null,"url":null,"abstract":"In this paper we characterize the wellcovered property for: theta-ring and ring graphs. Furthermore, we prove that Cohen-Macaulayness, pure shellability and pure vertex decomposability are equivalent for theta-ring graphs. Also, we give a combinatorial characterization of these graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-covered and Cohen–Macaulay theta-ring graphs\",\"authors\":\"Iván D. Castrillón, E. Reyes\",\"doi\":\"10.1216/jca.2021.13.461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we characterize the wellcovered property for: theta-ring and ring graphs. Furthermore, we prove that Cohen-Macaulayness, pure shellability and pure vertex decomposability are equivalent for theta-ring graphs. Also, we give a combinatorial characterization of these graphs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2021.13.461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2021.13.461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we characterize the wellcovered property for: theta-ring and ring graphs. Furthermore, we prove that Cohen-Macaulayness, pure shellability and pure vertex decomposability are equivalent for theta-ring graphs. Also, we give a combinatorial characterization of these graphs.