基于自适应图卷积网络的地铁短期客流预测

IF 2.8 3区 工程技术 Q3 TRANSPORTATION
Jianli Zhao , Rumeng Zhang , Qiuxia Sun , Jingshi Shi , Futong Zhuo , Qing Li
{"title":"基于自适应图卷积网络的地铁短期客流预测","authors":"Jianli Zhao ,&nbsp;Rumeng Zhang ,&nbsp;Qiuxia Sun ,&nbsp;Jingshi Shi ,&nbsp;Futong Zhuo ,&nbsp;Qing Li","doi":"10.1080/15472450.2023.2209913","DOIUrl":null,"url":null,"abstract":"<div><div>With the development and acceleration of urbanization, urban metro traffic is gradually growing up to a large network, and the structure of topology between stations becomes more complex, which makes it increasingly difficult to capture the spatial dependency. The vertical and horizontal interlacing of multiple lines makes the stations distributed topologically, and the traditional graph convolution is implemented on the adjacency matrix generated based on a priori knowledge, which cannot reflect the actual spatial dependence between stations. To address these problems, this paper proposes an adaptive graph convolutional network model (Adapt-GCN), which replaces the fixed adjacency matrix obtained from a priori knowledge in the traditional GCN with a trainable adaptive adjacency matrix. This can not only effectively adjust the weights of correlations between adjacent stations, but also adaptively capture the spatial dependencies between non-adjacent stations. This paper uses the Shanghai Metro dataset to verify the effectiveness of the model in improving prediction accuracy and reducing training time.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 806-815"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive graph convolutional network-based short-term passenger flow prediction for metro\",\"authors\":\"Jianli Zhao ,&nbsp;Rumeng Zhang ,&nbsp;Qiuxia Sun ,&nbsp;Jingshi Shi ,&nbsp;Futong Zhuo ,&nbsp;Qing Li\",\"doi\":\"10.1080/15472450.2023.2209913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the development and acceleration of urbanization, urban metro traffic is gradually growing up to a large network, and the structure of topology between stations becomes more complex, which makes it increasingly difficult to capture the spatial dependency. The vertical and horizontal interlacing of multiple lines makes the stations distributed topologically, and the traditional graph convolution is implemented on the adjacency matrix generated based on a priori knowledge, which cannot reflect the actual spatial dependence between stations. To address these problems, this paper proposes an adaptive graph convolutional network model (Adapt-GCN), which replaces the fixed adjacency matrix obtained from a priori knowledge in the traditional GCN with a trainable adaptive adjacency matrix. This can not only effectively adjust the weights of correlations between adjacent stations, but also adaptively capture the spatial dependencies between non-adjacent stations. This paper uses the Shanghai Metro dataset to verify the effectiveness of the model in improving prediction accuracy and reducing training time.</div></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"28 6\",\"pages\":\"Pages 806-815\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S154724502300083X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S154724502300083X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive graph convolutional network-based short-term passenger flow prediction for metro
With the development and acceleration of urbanization, urban metro traffic is gradually growing up to a large network, and the structure of topology between stations becomes more complex, which makes it increasingly difficult to capture the spatial dependency. The vertical and horizontal interlacing of multiple lines makes the stations distributed topologically, and the traditional graph convolution is implemented on the adjacency matrix generated based on a priori knowledge, which cannot reflect the actual spatial dependence between stations. To address these problems, this paper proposes an adaptive graph convolutional network model (Adapt-GCN), which replaces the fixed adjacency matrix obtained from a priori knowledge in the traditional GCN with a trainable adaptive adjacency matrix. This can not only effectively adjust the weights of correlations between adjacent stations, but also adaptively capture the spatial dependencies between non-adjacent stations. This paper uses the Shanghai Metro dataset to verify the effectiveness of the model in improving prediction accuracy and reducing training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信