Sanjeev P. Kaulgud, Vishwanath R. Hulipalled, S. Patil, Prabhuraj Metipatil
{"title":"基于集成的双向长短期记忆网络检测前列腺癌","authors":"Sanjeev P. Kaulgud, Vishwanath R. Hulipalled, S. Patil, Prabhuraj Metipatil","doi":"10.2174/2352096516666230420081217","DOIUrl":null,"url":null,"abstract":"\n\nIn recent periods, micro-array data analysis using soft computing and machine learning techniques gained more interest among researchers to detect prostate cancer. Due to the small sample size of micro-array data with a larger number of attributes, traditional machine learning techniques face difficulty detecting prostate cancer.\n\n\n\nThe selection of relevant genes exploits useful information about micro-array data, which enhances the accuracy of detection. In this research, the samples are acquired from the gene expression omnibus database, particularly related to the prostate cancer GEO IDs such as GSE 21034, GSE 15484 and GSE 3325/GSE 3998. In addition, ensemble feature optimization technique and Bidirectional Long Short Term Memory (Bi-LSTM) network are employed for detecting prostate cancer from the microarray data of gene expression.\n\n\n\nThe ensemble feature optimization technique includes 4 metaheuristic optimizers that select the top 2000 genes from each GEO IDs, which are relevant to prostate cancer. Next, the selected genes are given to the Bi-LSTM network for classifying the normal and prostate cancer subjects.\n\n\n\nThe simulation analysis revealed that the ensemble based Bi-LSTM network obtained 99.13%, 98.97%, and 94.12% of accuracy on the GEO IDs like GSE 3325/GSE 3998, GSE 21034, and GSE 15484.\n\n\n\nThe simulation analysis revealed that the ensemble based Bi-LSTM network obtained 99.13%, 98.97%, and 94.12% of accuracy on the GEO IDs like GSE 3325/GSE 3998, GSE 21034, and GSE 15484.\n","PeriodicalId":43275,"journal":{"name":"Recent Advances in Electrical & Electronic Engineering","volume":"149 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of prostate cancer using ensemble based bi-directional long short term memory network\",\"authors\":\"Sanjeev P. Kaulgud, Vishwanath R. Hulipalled, S. Patil, Prabhuraj Metipatil\",\"doi\":\"10.2174/2352096516666230420081217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nIn recent periods, micro-array data analysis using soft computing and machine learning techniques gained more interest among researchers to detect prostate cancer. Due to the small sample size of micro-array data with a larger number of attributes, traditional machine learning techniques face difficulty detecting prostate cancer.\\n\\n\\n\\nThe selection of relevant genes exploits useful information about micro-array data, which enhances the accuracy of detection. In this research, the samples are acquired from the gene expression omnibus database, particularly related to the prostate cancer GEO IDs such as GSE 21034, GSE 15484 and GSE 3325/GSE 3998. In addition, ensemble feature optimization technique and Bidirectional Long Short Term Memory (Bi-LSTM) network are employed for detecting prostate cancer from the microarray data of gene expression.\\n\\n\\n\\nThe ensemble feature optimization technique includes 4 metaheuristic optimizers that select the top 2000 genes from each GEO IDs, which are relevant to prostate cancer. Next, the selected genes are given to the Bi-LSTM network for classifying the normal and prostate cancer subjects.\\n\\n\\n\\nThe simulation analysis revealed that the ensemble based Bi-LSTM network obtained 99.13%, 98.97%, and 94.12% of accuracy on the GEO IDs like GSE 3325/GSE 3998, GSE 21034, and GSE 15484.\\n\\n\\n\\nThe simulation analysis revealed that the ensemble based Bi-LSTM network obtained 99.13%, 98.97%, and 94.12% of accuracy on the GEO IDs like GSE 3325/GSE 3998, GSE 21034, and GSE 15484.\\n\",\"PeriodicalId\":43275,\"journal\":{\"name\":\"Recent Advances in Electrical & Electronic Engineering\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Electrical & Electronic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2352096516666230420081217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Electrical & Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2352096516666230420081217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Detection of prostate cancer using ensemble based bi-directional long short term memory network
In recent periods, micro-array data analysis using soft computing and machine learning techniques gained more interest among researchers to detect prostate cancer. Due to the small sample size of micro-array data with a larger number of attributes, traditional machine learning techniques face difficulty detecting prostate cancer.
The selection of relevant genes exploits useful information about micro-array data, which enhances the accuracy of detection. In this research, the samples are acquired from the gene expression omnibus database, particularly related to the prostate cancer GEO IDs such as GSE 21034, GSE 15484 and GSE 3325/GSE 3998. In addition, ensemble feature optimization technique and Bidirectional Long Short Term Memory (Bi-LSTM) network are employed for detecting prostate cancer from the microarray data of gene expression.
The ensemble feature optimization technique includes 4 metaheuristic optimizers that select the top 2000 genes from each GEO IDs, which are relevant to prostate cancer. Next, the selected genes are given to the Bi-LSTM network for classifying the normal and prostate cancer subjects.
The simulation analysis revealed that the ensemble based Bi-LSTM network obtained 99.13%, 98.97%, and 94.12% of accuracy on the GEO IDs like GSE 3325/GSE 3998, GSE 21034, and GSE 15484.
The simulation analysis revealed that the ensemble based Bi-LSTM network obtained 99.13%, 98.97%, and 94.12% of accuracy on the GEO IDs like GSE 3325/GSE 3998, GSE 21034, and GSE 15484.
期刊介绍:
Recent Advances in Electrical & Electronic Engineering publishes full-length/mini reviews and research articles, guest edited thematic issues on electrical and electronic engineering and applications. The journal also covers research in fast emerging applications of electrical power supply, electrical systems, power transmission, electromagnetism, motor control process and technologies involved and related to electrical and electronic engineering. The journal is essential reading for all researchers in electrical and electronic engineering science.