{"title":"双调和非线性标量场方程","authors":"Jarosław Mederski, Jakub Siemianowski","doi":"10.5445/IR/1000135513","DOIUrl":null,"url":null,"abstract":"We prove a Brezis-Kato-type regularity result for weak solutions to the biharmonic nonlinear\r\nequation $$\\Delta^2u=g(x,u)\\qquad\\text{ in }\\mathbb{R}^N$$ with a Caratheodory function $g:\\mathbb{R}^N\\times\\mathbb{R}\\to\\mathbb{R}$, $N\\ge5$. The regularity results give rise to the existence of ground state solutions provided that g has a general subcritical growth at infinity. We also conceive a newbiharmonic logarithmic Sobolev inequality\r\n$$\\int_{\\mathbb{R}^N}|u|^2\\log|u|\\,dx \\le \\frac{N}{8}\\log\\left(C\\int_{\\mathbb{R}^N}|\\Delta u|^2\\,dx\\right), \\quad\\text{ for } u\\in H^2(\\mathbb{R}^N), \\int_{\\mathbb{R}^N}u^2\\,dx=1,$$\r\nfor a constant $0<C<\\left(\\frac{2}{\\pi e N}\\right)^2$ and we characterize its minimizers.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Biharmonic nonlinear scalar field equations\",\"authors\":\"Jarosław Mederski, Jakub Siemianowski\",\"doi\":\"10.5445/IR/1000135513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a Brezis-Kato-type regularity result for weak solutions to the biharmonic nonlinear\\r\\nequation $$\\\\Delta^2u=g(x,u)\\\\qquad\\\\text{ in }\\\\mathbb{R}^N$$ with a Caratheodory function $g:\\\\mathbb{R}^N\\\\times\\\\mathbb{R}\\\\to\\\\mathbb{R}$, $N\\\\ge5$. The regularity results give rise to the existence of ground state solutions provided that g has a general subcritical growth at infinity. We also conceive a newbiharmonic logarithmic Sobolev inequality\\r\\n$$\\\\int_{\\\\mathbb{R}^N}|u|^2\\\\log|u|\\\\,dx \\\\le \\\\frac{N}{8}\\\\log\\\\left(C\\\\int_{\\\\mathbb{R}^N}|\\\\Delta u|^2\\\\,dx\\\\right), \\\\quad\\\\text{ for } u\\\\in H^2(\\\\mathbb{R}^N), \\\\int_{\\\\mathbb{R}^N}u^2\\\\,dx=1,$$\\r\\nfor a constant $0<C<\\\\left(\\\\frac{2}{\\\\pi e N}\\\\right)^2$ and we characterize its minimizers.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5445/IR/1000135513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000135513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
我们证明了具有卡拉多函数$g:\mathbb{R}^N\times\mathbb{R}\to\mathbb{R}$, $N\ge5$的双调和非线性方程$$\Delta^2u=g(x,u)\qquad\text{ in }\mathbb{R}^N$$弱解的一个brezis - kato型正则性结果。如果g在无穷远处具有一般的亚临界增长,则正则性结果可以得到基态解的存在性。对于常数$0本文章由计算机程序翻译,如有差异,请以英文原文为准。
We prove a Brezis-Kato-type regularity result for weak solutions to the biharmonic nonlinear
equation $$\Delta^2u=g(x,u)\qquad\text{ in }\mathbb{R}^N$$ with a Caratheodory function $g:\mathbb{R}^N\times\mathbb{R}\to\mathbb{R}$, $N\ge5$. The regularity results give rise to the existence of ground state solutions provided that g has a general subcritical growth at infinity. We also conceive a newbiharmonic logarithmic Sobolev inequality
$$\int_{\mathbb{R}^N}|u|^2\log|u|\,dx \le \frac{N}{8}\log\left(C\int_{\mathbb{R}^N}|\Delta u|^2\,dx\right), \quad\text{ for } u\in H^2(\mathbb{R}^N), \int_{\mathbb{R}^N}u^2\,dx=1,$$
for a constant $0