高压扭转低温变形对Au-Co合金断口形貌的影响

T. Tolmachev, V. Pilyugin, N. Nikolayeva, A. I. Ancharov, A. M. Patselov, Yu. V. Solov’eva, T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev
{"title":"高压扭转低温变形对Au-Co合金断口形貌的影响","authors":"T. Tolmachev, V. Pilyugin, N. Nikolayeva, A. I. Ancharov, A. M. Patselov, Yu. V. Solov’eva, T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev","doi":"10.17804/2410-9908.2022.6.006-015","DOIUrl":null,"url":null,"abstract":"Au-Co alloys with limited solubility were synthesized by the high-pressure torsion in boiling nitrogen at various anvil revolutions. Au and Co were initially in the state of a powder mixture in an equiatomic ratio. The obtained alloys were subjected to SEM fractography and XRD analysis in transmission X-ray synchrotron radiation, depending on the amount of strain. It is shown that the morphology of the fracture surfaces of the synthesized alloy depends significantly on strain. It is revealed that the mutual mixing of the components increases with strain. The images of the fracture surfaces of the Au-Co alloys testify that, as the strain and the number of anvil revolutions increase, a transition from ductile fracture, with inclusions of brittle intergranular fracture, to uniformly ductile fracture is observed over the entire thickness of the sample. A further increase in the strain and the number of anvil revolutions corresponds to the transition from the ductile type of the fracture surface to the brittle one. In addition, the fractography of the Au-Co alloys has revealed that the relief of the fracture surface becomes more homogeneous and that the size of the structural elements of the fracture surface decreases with increasing strain.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of cryodeformation by high-pressure torsion on the fracture surface of Au-Co alloys\",\"authors\":\"T. Tolmachev, V. Pilyugin, N. Nikolayeva, A. I. Ancharov, A. M. Patselov, Yu. V. Solov’eva, T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev\",\"doi\":\"10.17804/2410-9908.2022.6.006-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Au-Co alloys with limited solubility were synthesized by the high-pressure torsion in boiling nitrogen at various anvil revolutions. Au and Co were initially in the state of a powder mixture in an equiatomic ratio. The obtained alloys were subjected to SEM fractography and XRD analysis in transmission X-ray synchrotron radiation, depending on the amount of strain. It is shown that the morphology of the fracture surfaces of the synthesized alloy depends significantly on strain. It is revealed that the mutual mixing of the components increases with strain. The images of the fracture surfaces of the Au-Co alloys testify that, as the strain and the number of anvil revolutions increase, a transition from ductile fracture, with inclusions of brittle intergranular fracture, to uniformly ductile fracture is observed over the entire thickness of the sample. A further increase in the strain and the number of anvil revolutions corresponds to the transition from the ductile type of the fracture surface to the brittle one. In addition, the fractography of the Au-Co alloys has revealed that the relief of the fracture surface becomes more homogeneous and that the size of the structural elements of the fracture surface decreases with increasing strain.\",\"PeriodicalId\":11165,\"journal\":{\"name\":\"Diagnostics, Resource and Mechanics of materials and structures\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics, Resource and Mechanics of materials and structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17804/2410-9908.2022.6.006-015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2022.6.006-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用高压扭转法在沸腾氮气中以不同转速合成了有限溶解度的金钴合金。Au和Co最初处于等原子比的粉末混合物状态。根据应变量的不同,对合金进行了SEM断口分析和透射x射线同步辐射的XRD分析。结果表明,合成合金的断口形貌与应变有显著的关系。结果表明,各组分的相互混合随应变的增加而增加。Au-Co合金的断口图像表明,随着应变和顶锤转数的增加,在整个试样厚度上观察到从含有脆性晶间断裂的韧性断裂向均匀韧性断裂的转变。应变和砧转数的进一步增加对应于断面从韧性型向脆性型的转变。此外,Au-Co合金的断口形貌表明,随着应变的增加,断口的形貌变得更加均匀,断口组织元素的尺寸减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of cryodeformation by high-pressure torsion on the fracture surface of Au-Co alloys
Au-Co alloys with limited solubility were synthesized by the high-pressure torsion in boiling nitrogen at various anvil revolutions. Au and Co were initially in the state of a powder mixture in an equiatomic ratio. The obtained alloys were subjected to SEM fractography and XRD analysis in transmission X-ray synchrotron radiation, depending on the amount of strain. It is shown that the morphology of the fracture surfaces of the synthesized alloy depends significantly on strain. It is revealed that the mutual mixing of the components increases with strain. The images of the fracture surfaces of the Au-Co alloys testify that, as the strain and the number of anvil revolutions increase, a transition from ductile fracture, with inclusions of brittle intergranular fracture, to uniformly ductile fracture is observed over the entire thickness of the sample. A further increase in the strain and the number of anvil revolutions corresponds to the transition from the ductile type of the fracture surface to the brittle one. In addition, the fractography of the Au-Co alloys has revealed that the relief of the fracture surface becomes more homogeneous and that the size of the structural elements of the fracture surface decreases with increasing strain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信