T. Ohshima, S. Sato, C. Morioka, M. Imaizumi, T. Sugaya, S. Niki
{"title":"辐照对InGaAs量子点太阳能电池电性能的影响","authors":"T. Ohshima, S. Sato, C. Morioka, M. Imaizumi, T. Sugaya, S. Niki","doi":"10.1109/PVSC.2010.5614152","DOIUrl":null,"url":null,"abstract":"PiN structure GaAs solar cells with In<inf>0.4</inf>Ga<inf>0.6</inf>As quantum dot layers are irradiated with electrons at 1 MeV in fluencies up to 3×10<sup>15</sup> /cm<sup>3</sup>. The change in the electrical performance under AM0 and the quantum efficiency are investigated. The decrease in the open circuit voltage for the solar cells with quantum dot layers is smaller than that for GaAs PiN solar cells with no quantum dot layer, although no significant difference in the degradation of the short circuit current is observed between solar cells with and without quantum dot layers. As a result of quantum efficiency measurements, it is revealed that the currents generated by In<inf>0.4</inf>Ga<inf>0.6</inf>As dot layers still remain by 60 % of the initial value, even after 1 MeV electron irradiation at 3×10<sup>15</sup> /cm<sup>2</sup>.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"46 1","pages":"002594-002598"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Change in the electrical performance of InGaAs quantum dot solar cells due to irradiation\",\"authors\":\"T. Ohshima, S. Sato, C. Morioka, M. Imaizumi, T. Sugaya, S. Niki\",\"doi\":\"10.1109/PVSC.2010.5614152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PiN structure GaAs solar cells with In<inf>0.4</inf>Ga<inf>0.6</inf>As quantum dot layers are irradiated with electrons at 1 MeV in fluencies up to 3×10<sup>15</sup> /cm<sup>3</sup>. The change in the electrical performance under AM0 and the quantum efficiency are investigated. The decrease in the open circuit voltage for the solar cells with quantum dot layers is smaller than that for GaAs PiN solar cells with no quantum dot layer, although no significant difference in the degradation of the short circuit current is observed between solar cells with and without quantum dot layers. As a result of quantum efficiency measurements, it is revealed that the currents generated by In<inf>0.4</inf>Ga<inf>0.6</inf>As dot layers still remain by 60 % of the initial value, even after 1 MeV electron irradiation at 3×10<sup>15</sup> /cm<sup>2</sup>.\",\"PeriodicalId\":6424,\"journal\":{\"name\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"volume\":\"46 1\",\"pages\":\"002594-002598\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2010.5614152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5614152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Change in the electrical performance of InGaAs quantum dot solar cells due to irradiation
PiN structure GaAs solar cells with In0.4Ga0.6As quantum dot layers are irradiated with electrons at 1 MeV in fluencies up to 3×1015 /cm3. The change in the electrical performance under AM0 and the quantum efficiency are investigated. The decrease in the open circuit voltage for the solar cells with quantum dot layers is smaller than that for GaAs PiN solar cells with no quantum dot layer, although no significant difference in the degradation of the short circuit current is observed between solar cells with and without quantum dot layers. As a result of quantum efficiency measurements, it is revealed that the currents generated by In0.4Ga0.6As dot layers still remain by 60 % of the initial value, even after 1 MeV electron irradiation at 3×1015 /cm2.