图的分数色数的平行拉格朗日启发式

P. Araújo, Ricardo C. Corrêa, Manoel B. Campêlo
{"title":"图的分数色数的平行拉格朗日启发式","authors":"P. Araújo, Ricardo C. Corrêa, Manoel B. Campêlo","doi":"10.1051/ro/2023062","DOIUrl":null,"url":null,"abstract":"We propose a new integer programming formulation for the Fractional Chromatic Number Problem. The formulation is based on representatives of stable sets. In addition, we present a Lagrangian heuristic from a Lagrangian relaxation of this formulation to obtain a good feasible solution for the problem.\nComputational experiments are presented to evaluate and compare the upper and lower bounds provided by our approach.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A parallel lagrangian heuristic for the fractional chromatic number of a graph\",\"authors\":\"P. Araújo, Ricardo C. Corrêa, Manoel B. Campêlo\",\"doi\":\"10.1051/ro/2023062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new integer programming formulation for the Fractional Chromatic Number Problem. The formulation is based on representatives of stable sets. In addition, we present a Lagrangian heuristic from a Lagrangian relaxation of this formulation to obtain a good feasible solution for the problem.\\nComputational experiments are presented to evaluate and compare the upper and lower bounds provided by our approach.\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对分数阶色数问题,提出了一个新的整数规划公式。该公式基于稳定集的代表。此外,我们还利用该公式的拉格朗日松弛给出了一个拉格朗日启发式,从而得到了该问题的一个很好的可行解。给出了计算实验来评估和比较我们的方法提供的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parallel lagrangian heuristic for the fractional chromatic number of a graph
We propose a new integer programming formulation for the Fractional Chromatic Number Problem. The formulation is based on representatives of stable sets. In addition, we present a Lagrangian heuristic from a Lagrangian relaxation of this formulation to obtain a good feasible solution for the problem. Computational experiments are presented to evaluate and compare the upper and lower bounds provided by our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信