{"title":"适合白光LED应用的Co掺杂ZnO纳米粒子激发波长改变PL的研究","authors":"N. Lavanya, N. Deepak","doi":"10.1515/zna-2023-0008","DOIUrl":null,"url":null,"abstract":"Abstract ZnO nanoparticles doped with Co at different concentration (Zn1−xCo x O) were synthesized by sol–gel auto combustion method and are characterized by using various characterization tools. Structural study using X-ray diffraction technique (XRD) analysis showed the crystalline nature with hexagonal wurtzite geometry and the composition analysis using energy dispersive X-ray spectroscopy (EDX) confirmed the incorporation of Co in the ZnO lattice in the case of doped nanoparticles. Scanning electron-microscopy (SEM) and transmission electron microscopy (TEM) analysis showed the prepared nanoparticles as spherical, loosely agglomerated and having dimension of nanoscale. UV–vis DRS studies indicated a red shift in optical band gap with Co doping. PL spectra exhibits emission in the UV and visible region and the analysis revealed information about the presence of various types of defects in the ZnO lattice. An increase in the excitation wavelength gives intense emission in the high wavelength region for doped nanoparticles confirming the presence of divalent and monovalent oxygen as main defects. The Zn0.93Co0.07O nanoparticles records CIE coordinates lying in the white region of CIE color space at 350 nm with CCT of 5561.4 K suggesting their suitability in fabrication of white light emitting diodes.","PeriodicalId":23871,"journal":{"name":"Zeitschrift für Naturforschung A","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excitation wavelength altered PL study of Co doped ZnO nanoparticles suitable for white LED application\",\"authors\":\"N. Lavanya, N. Deepak\",\"doi\":\"10.1515/zna-2023-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract ZnO nanoparticles doped with Co at different concentration (Zn1−xCo x O) were synthesized by sol–gel auto combustion method and are characterized by using various characterization tools. Structural study using X-ray diffraction technique (XRD) analysis showed the crystalline nature with hexagonal wurtzite geometry and the composition analysis using energy dispersive X-ray spectroscopy (EDX) confirmed the incorporation of Co in the ZnO lattice in the case of doped nanoparticles. Scanning electron-microscopy (SEM) and transmission electron microscopy (TEM) analysis showed the prepared nanoparticles as spherical, loosely agglomerated and having dimension of nanoscale. UV–vis DRS studies indicated a red shift in optical band gap with Co doping. PL spectra exhibits emission in the UV and visible region and the analysis revealed information about the presence of various types of defects in the ZnO lattice. An increase in the excitation wavelength gives intense emission in the high wavelength region for doped nanoparticles confirming the presence of divalent and monovalent oxygen as main defects. The Zn0.93Co0.07O nanoparticles records CIE coordinates lying in the white region of CIE color space at 350 nm with CCT of 5561.4 K suggesting their suitability in fabrication of white light emitting diodes.\",\"PeriodicalId\":23871,\"journal\":{\"name\":\"Zeitschrift für Naturforschung A\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zna-2023-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Excitation wavelength altered PL study of Co doped ZnO nanoparticles suitable for white LED application
Abstract ZnO nanoparticles doped with Co at different concentration (Zn1−xCo x O) were synthesized by sol–gel auto combustion method and are characterized by using various characterization tools. Structural study using X-ray diffraction technique (XRD) analysis showed the crystalline nature with hexagonal wurtzite geometry and the composition analysis using energy dispersive X-ray spectroscopy (EDX) confirmed the incorporation of Co in the ZnO lattice in the case of doped nanoparticles. Scanning electron-microscopy (SEM) and transmission electron microscopy (TEM) analysis showed the prepared nanoparticles as spherical, loosely agglomerated and having dimension of nanoscale. UV–vis DRS studies indicated a red shift in optical band gap with Co doping. PL spectra exhibits emission in the UV and visible region and the analysis revealed information about the presence of various types of defects in the ZnO lattice. An increase in the excitation wavelength gives intense emission in the high wavelength region for doped nanoparticles confirming the presence of divalent and monovalent oxygen as main defects. The Zn0.93Co0.07O nanoparticles records CIE coordinates lying in the white region of CIE color space at 350 nm with CCT of 5561.4 K suggesting their suitability in fabrication of white light emitting diodes.