利用GRA优化聚酰胺6纳米复合材料的钻孔参数

A. Thangavel, R. Kuppusamy, Ranganathan Lakshmanan
{"title":"利用GRA优化聚酰胺6纳米复合材料的钻孔参数","authors":"A. Thangavel, R. Kuppusamy, Ranganathan Lakshmanan","doi":"10.1590/1517-7076-rmat-2022-0337","DOIUrl":null,"url":null,"abstract":"For drilling polyamide 6 (PA6) hybrid nano composites reinforced with copper nanoparticles and multi-walled carbon nano tubes (MWCNT), this work optimizes the process variables including reinforcing percentage, drill bit diameter, feed rate, and spindle speed. In this work, the Taguchi method was used to construct the experiments. L9 orthogonal arrays were used in the trials. Torque, surface roughness, and thrust force were the three different responses on which the influence of different process factors and their combinations were examined. The ideal values of the process factors have been found by employing the grey relational code produced by the grey relational analysis. The crucial process factors were identified using analysis of variance (ANOVA). To verify the test results, a confirmation test was carried out. The surface of the drilled holes was examined with a scanning electron microscope. The optimal drilling process parameters for PA 6 nanocomposites were 0.6 weight %, 500 rpm, 90 mm/min, and 6 mm in drill diameter. The weight percentage of the nano Cu particles (60.618%) clearly has a greater impact on drilling of Polyamide 6 hybrid nanocomposites reinforced with Cu nanoparticles and MWCNT than did the drill diameter (26.699%), speed (7.407%), and feed rate (5.271%). Verification of testing results at the best standard shows that the thrust force is reduced from 288.8 N to 281.4 N, the torque is decreased from 27.01 Nm to 24.52 Nm, and the surface polish is improved from 1.414","PeriodicalId":18246,"journal":{"name":"Matéria (Rio de Janeiro)","volume":"263 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of drilling parameters using GRA for polyamide 6 nanocomposites\",\"authors\":\"A. Thangavel, R. Kuppusamy, Ranganathan Lakshmanan\",\"doi\":\"10.1590/1517-7076-rmat-2022-0337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For drilling polyamide 6 (PA6) hybrid nano composites reinforced with copper nanoparticles and multi-walled carbon nano tubes (MWCNT), this work optimizes the process variables including reinforcing percentage, drill bit diameter, feed rate, and spindle speed. In this work, the Taguchi method was used to construct the experiments. L9 orthogonal arrays were used in the trials. Torque, surface roughness, and thrust force were the three different responses on which the influence of different process factors and their combinations were examined. The ideal values of the process factors have been found by employing the grey relational code produced by the grey relational analysis. The crucial process factors were identified using analysis of variance (ANOVA). To verify the test results, a confirmation test was carried out. The surface of the drilled holes was examined with a scanning electron microscope. The optimal drilling process parameters for PA 6 nanocomposites were 0.6 weight %, 500 rpm, 90 mm/min, and 6 mm in drill diameter. The weight percentage of the nano Cu particles (60.618%) clearly has a greater impact on drilling of Polyamide 6 hybrid nanocomposites reinforced with Cu nanoparticles and MWCNT than did the drill diameter (26.699%), speed (7.407%), and feed rate (5.271%). Verification of testing results at the best standard shows that the thrust force is reduced from 288.8 N to 281.4 N, the torque is decreased from 27.01 Nm to 24.52 Nm, and the surface polish is improved from 1.414\",\"PeriodicalId\":18246,\"journal\":{\"name\":\"Matéria (Rio de Janeiro)\",\"volume\":\"263 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matéria (Rio de Janeiro)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1517-7076-rmat-2022-0337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matéria (Rio de Janeiro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1517-7076-rmat-2022-0337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于钻削由铜纳米颗粒和多壁碳纳米管(MWCNT)增强的聚酰胺6 (PA6)复合纳米材料,本研究优化了包括增强率、钻头直径、进给速率和主轴转速在内的工艺变量。本研究采用田口法构建实验。试验采用L9正交阵列。考察了不同工艺因素及其组合对扭矩、表面粗糙度和推力的影响。利用灰色关联分析生成的灰色关联代码,找到了过程因子的理想值。使用方差分析(ANOVA)确定关键过程因素。为了验证试验结果,进行了确认试验。用扫描电子显微镜检查了钻孔的表面。pa6纳米复合材料的最佳钻孔工艺参数为:重量为0.6 %,转速为500 rpm,孔径为90 mm/min,孔径为6 mm。纳米Cu颗粒的重量百分比(60.618%)明显大于钻径(26.699%)、速度(7.407%)和进给量(5.271%)对Cu - MWCNT增强聚酰胺6杂化纳米复合材料的钻取效果。在最佳标准下对试验结果的验证表明,推力由288.8 N减小到281.4 N,扭矩由27.01 Nm减小到24.52 Nm,表面光洁度由1.414 Nm提高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of drilling parameters using GRA for polyamide 6 nanocomposites
For drilling polyamide 6 (PA6) hybrid nano composites reinforced with copper nanoparticles and multi-walled carbon nano tubes (MWCNT), this work optimizes the process variables including reinforcing percentage, drill bit diameter, feed rate, and spindle speed. In this work, the Taguchi method was used to construct the experiments. L9 orthogonal arrays were used in the trials. Torque, surface roughness, and thrust force were the three different responses on which the influence of different process factors and their combinations were examined. The ideal values of the process factors have been found by employing the grey relational code produced by the grey relational analysis. The crucial process factors were identified using analysis of variance (ANOVA). To verify the test results, a confirmation test was carried out. The surface of the drilled holes was examined with a scanning electron microscope. The optimal drilling process parameters for PA 6 nanocomposites were 0.6 weight %, 500 rpm, 90 mm/min, and 6 mm in drill diameter. The weight percentage of the nano Cu particles (60.618%) clearly has a greater impact on drilling of Polyamide 6 hybrid nanocomposites reinforced with Cu nanoparticles and MWCNT than did the drill diameter (26.699%), speed (7.407%), and feed rate (5.271%). Verification of testing results at the best standard shows that the thrust force is reduced from 288.8 N to 281.4 N, the torque is decreased from 27.01 Nm to 24.52 Nm, and the surface polish is improved from 1.414
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信