利用人工智能和大数据预测风能的新进展:科学计量学的见解

Erlong Zhao , Shaolong Sun , Shouyang Wang
{"title":"利用人工智能和大数据预测风能的新进展:科学计量学的见解","authors":"Erlong Zhao ,&nbsp;Shaolong Sun ,&nbsp;Shouyang Wang","doi":"10.1016/j.dsm.2022.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate forecasting results are crucial for increasing energy efficiency and lowering energy consumption in wind energy. Big data and artificial intelligence (AI) have great potential in wind energy forecasting. Although the literature on this subject is extensive, it lacks a comprehensive research status survey. In identifying the evolution rules of big data and AI methods in wind energy forecasting, this paper summarizes the studies on big data and AI in wind energy forecasting over the last two decades. The existing big data types, analysis techniques, and forecasting methods are classified and sorted by combining literature reviews and scientometrics methods. Furthermore, the research trend of wind energy forecasting methods is determined based on big data and artificial intelligence by combing the existing research hotspots and frontier progress. Finally, this paper summarizes existing research’s opportunities, challenges, and implications from various perspectives. The research results serve as a foundation for future research and promote the further development of wind energy forecasting.</p></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666764922000212/pdfft?md5=53efdc16a677b8948a6955a1f86304a5&pid=1-s2.0-S2666764922000212-main.pdf","citationCount":"45","resultStr":"{\"title\":\"New developments in wind energy forecasting with artificial intelligence and big data: a scientometric insight\",\"authors\":\"Erlong Zhao ,&nbsp;Shaolong Sun ,&nbsp;Shouyang Wang\",\"doi\":\"10.1016/j.dsm.2022.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate forecasting results are crucial for increasing energy efficiency and lowering energy consumption in wind energy. Big data and artificial intelligence (AI) have great potential in wind energy forecasting. Although the literature on this subject is extensive, it lacks a comprehensive research status survey. In identifying the evolution rules of big data and AI methods in wind energy forecasting, this paper summarizes the studies on big data and AI in wind energy forecasting over the last two decades. The existing big data types, analysis techniques, and forecasting methods are classified and sorted by combining literature reviews and scientometrics methods. Furthermore, the research trend of wind energy forecasting methods is determined based on big data and artificial intelligence by combing the existing research hotspots and frontier progress. Finally, this paper summarizes existing research’s opportunities, challenges, and implications from various perspectives. The research results serve as a foundation for future research and promote the further development of wind energy forecasting.</p></div>\",\"PeriodicalId\":100353,\"journal\":{\"name\":\"Data Science and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666764922000212/pdfft?md5=53efdc16a677b8948a6955a1f86304a5&pid=1-s2.0-S2666764922000212-main.pdf\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666764922000212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764922000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

准确的预测结果对于提高风能的能源效率和降低能源消耗至关重要。大数据和人工智能(AI)在风能预测中具有巨大的潜力。虽然关于这一主题的文献非常广泛,但缺乏全面的研究现状调查。在明确大数据和人工智能方法在风能预测中的演变规律的基础上,总结了近二十年来大数据和人工智能在风能预测中的研究进展。结合文献综述和科学计量学方法,对现有的大数据类型、分析技术和预测方法进行分类整理。结合现有研究热点和前沿进展,确定基于大数据和人工智能的风能预测方法研究趋势。最后,本文从多个角度总结了现有研究的机遇、挑战和启示。研究成果为今后的研究奠定了基础,促进了风能预测的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New developments in wind energy forecasting with artificial intelligence and big data: a scientometric insight

Accurate forecasting results are crucial for increasing energy efficiency and lowering energy consumption in wind energy. Big data and artificial intelligence (AI) have great potential in wind energy forecasting. Although the literature on this subject is extensive, it lacks a comprehensive research status survey. In identifying the evolution rules of big data and AI methods in wind energy forecasting, this paper summarizes the studies on big data and AI in wind energy forecasting over the last two decades. The existing big data types, analysis techniques, and forecasting methods are classified and sorted by combining literature reviews and scientometrics methods. Furthermore, the research trend of wind energy forecasting methods is determined based on big data and artificial intelligence by combing the existing research hotspots and frontier progress. Finally, this paper summarizes existing research’s opportunities, challenges, and implications from various perspectives. The research results serve as a foundation for future research and promote the further development of wind energy forecasting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信