{"title":"高雷诺数下机载风能系统大升力翼型的研究与优化","authors":"D. Fischer, B. Church, C. Nayeri, C. Paschereit","doi":"10.3390/wind3020016","DOIUrl":null,"url":null,"abstract":"The potential of airfoil optimisation for the specific requirements of airborne wind energy (AWE) systems is investigated. Experimental and numerical investigations were conducted at high Reynolds numbers for the S1223 airfoil and an optimised airfoil with thin slat. The optimised geometry was generated using the NSGA-II optimisation algorithm in conjunction with 2D-RANS simulations. The results showed that simultaneous optimisation of the slat and airfoil is the most promising approach. Furthermore, the choice of turbulence model was found to be crucial, requiring appropriate transition modeling to reproduce experimental data. The k-ω-SST-γ-Reθ model proved to be most suitable for the geometries investigated. Wind tunnel experiments were conducted with high aspect ratio model airfoils, using a novel structural design, relying mostly on 3D-printed airfoil segments. The optimised airfoil and slat geometry showed significantly improved maximum lift and a shift of the maximum power factor to higher angles of attack, indicating good potential for use in AWE systems, especially at higher Reynolds numbers. The combined numerical and experimental approach proved to be very successful and the overall process a promising starting point for future optimisation and investigation of airfoils for AWE systems.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"29 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation and Optimisation of High-Lift Airfoils for Airborne Wind Energy Systems at High Reynolds Numbers\",\"authors\":\"D. Fischer, B. Church, C. Nayeri, C. Paschereit\",\"doi\":\"10.3390/wind3020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential of airfoil optimisation for the specific requirements of airborne wind energy (AWE) systems is investigated. Experimental and numerical investigations were conducted at high Reynolds numbers for the S1223 airfoil and an optimised airfoil with thin slat. The optimised geometry was generated using the NSGA-II optimisation algorithm in conjunction with 2D-RANS simulations. The results showed that simultaneous optimisation of the slat and airfoil is the most promising approach. Furthermore, the choice of turbulence model was found to be crucial, requiring appropriate transition modeling to reproduce experimental data. The k-ω-SST-γ-Reθ model proved to be most suitable for the geometries investigated. Wind tunnel experiments were conducted with high aspect ratio model airfoils, using a novel structural design, relying mostly on 3D-printed airfoil segments. The optimised airfoil and slat geometry showed significantly improved maximum lift and a shift of the maximum power factor to higher angles of attack, indicating good potential for use in AWE systems, especially at higher Reynolds numbers. The combined numerical and experimental approach proved to be very successful and the overall process a promising starting point for future optimisation and investigation of airfoils for AWE systems.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/wind3020016\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind3020016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Investigation and Optimisation of High-Lift Airfoils for Airborne Wind Energy Systems at High Reynolds Numbers
The potential of airfoil optimisation for the specific requirements of airborne wind energy (AWE) systems is investigated. Experimental and numerical investigations were conducted at high Reynolds numbers for the S1223 airfoil and an optimised airfoil with thin slat. The optimised geometry was generated using the NSGA-II optimisation algorithm in conjunction with 2D-RANS simulations. The results showed that simultaneous optimisation of the slat and airfoil is the most promising approach. Furthermore, the choice of turbulence model was found to be crucial, requiring appropriate transition modeling to reproduce experimental data. The k-ω-SST-γ-Reθ model proved to be most suitable for the geometries investigated. Wind tunnel experiments were conducted with high aspect ratio model airfoils, using a novel structural design, relying mostly on 3D-printed airfoil segments. The optimised airfoil and slat geometry showed significantly improved maximum lift and a shift of the maximum power factor to higher angles of attack, indicating good potential for use in AWE systems, especially at higher Reynolds numbers. The combined numerical and experimental approach proved to be very successful and the overall process a promising starting point for future optimisation and investigation of airfoils for AWE systems.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.