高雷诺数下机载风能系统大升力翼型的研究与优化

IF 1.3 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
D. Fischer, B. Church, C. Nayeri, C. Paschereit
{"title":"高雷诺数下机载风能系统大升力翼型的研究与优化","authors":"D. Fischer, B. Church, C. Nayeri, C. Paschereit","doi":"10.3390/wind3020016","DOIUrl":null,"url":null,"abstract":"The potential of airfoil optimisation for the specific requirements of airborne wind energy (AWE) systems is investigated. Experimental and numerical investigations were conducted at high Reynolds numbers for the S1223 airfoil and an optimised airfoil with thin slat. The optimised geometry was generated using the NSGA-II optimisation algorithm in conjunction with 2D-RANS simulations. The results showed that simultaneous optimisation of the slat and airfoil is the most promising approach. Furthermore, the choice of turbulence model was found to be crucial, requiring appropriate transition modeling to reproduce experimental data. The k-ω-SST-γ-Reθ model proved to be most suitable for the geometries investigated. Wind tunnel experiments were conducted with high aspect ratio model airfoils, using a novel structural design, relying mostly on 3D-printed airfoil segments. The optimised airfoil and slat geometry showed significantly improved maximum lift and a shift of the maximum power factor to higher angles of attack, indicating good potential for use in AWE systems, especially at higher Reynolds numbers. The combined numerical and experimental approach proved to be very successful and the overall process a promising starting point for future optimisation and investigation of airfoils for AWE systems.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"29 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation and Optimisation of High-Lift Airfoils for Airborne Wind Energy Systems at High Reynolds Numbers\",\"authors\":\"D. Fischer, B. Church, C. Nayeri, C. Paschereit\",\"doi\":\"10.3390/wind3020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential of airfoil optimisation for the specific requirements of airborne wind energy (AWE) systems is investigated. Experimental and numerical investigations were conducted at high Reynolds numbers for the S1223 airfoil and an optimised airfoil with thin slat. The optimised geometry was generated using the NSGA-II optimisation algorithm in conjunction with 2D-RANS simulations. The results showed that simultaneous optimisation of the slat and airfoil is the most promising approach. Furthermore, the choice of turbulence model was found to be crucial, requiring appropriate transition modeling to reproduce experimental data. The k-ω-SST-γ-Reθ model proved to be most suitable for the geometries investigated. Wind tunnel experiments were conducted with high aspect ratio model airfoils, using a novel structural design, relying mostly on 3D-printed airfoil segments. The optimised airfoil and slat geometry showed significantly improved maximum lift and a shift of the maximum power factor to higher angles of attack, indicating good potential for use in AWE systems, especially at higher Reynolds numbers. The combined numerical and experimental approach proved to be very successful and the overall process a promising starting point for future optimisation and investigation of airfoils for AWE systems.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/wind3020016\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind3020016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

针对机载风能(AWE)系统的具体要求,研究了翼型优化的潜力。实验和数值研究进行了在高雷诺数为S1223翼型和优化翼型薄板。使用NSGA-II优化算法结合2D-RANS模拟生成优化的几何形状。结果表明,同时优化板和翼型是最有希望的方法。此外,湍流模型的选择是至关重要的,需要适当的过渡建模来再现实验数据。证明k-ω-SST-γ-Reθ模型最适合所研究的几何形状。采用新型结构设计的高展弦比模型翼型进行了风洞试验,主要依靠3d打印翼型段。优化后的翼型和翼板几何形状显著提高了最大升力,并将最大功率系数转移到更高的迎角,这表明在AWE系统中具有良好的应用潜力,特别是在更高雷诺数的情况下。数值和实验相结合的方法被证明是非常成功的,整个过程为未来AWE系统的翼型优化和研究提供了一个有希望的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation and Optimisation of High-Lift Airfoils for Airborne Wind Energy Systems at High Reynolds Numbers
The potential of airfoil optimisation for the specific requirements of airborne wind energy (AWE) systems is investigated. Experimental and numerical investigations were conducted at high Reynolds numbers for the S1223 airfoil and an optimised airfoil with thin slat. The optimised geometry was generated using the NSGA-II optimisation algorithm in conjunction with 2D-RANS simulations. The results showed that simultaneous optimisation of the slat and airfoil is the most promising approach. Furthermore, the choice of turbulence model was found to be crucial, requiring appropriate transition modeling to reproduce experimental data. The k-ω-SST-γ-Reθ model proved to be most suitable for the geometries investigated. Wind tunnel experiments were conducted with high aspect ratio model airfoils, using a novel structural design, relying mostly on 3D-printed airfoil segments. The optimised airfoil and slat geometry showed significantly improved maximum lift and a shift of the maximum power factor to higher angles of attack, indicating good potential for use in AWE systems, especially at higher Reynolds numbers. The combined numerical and experimental approach proved to be very successful and the overall process a promising starting point for future optimisation and investigation of airfoils for AWE systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind and Structures
Wind and Structures 工程技术-工程:土木
CiteScore
2.70
自引率
18.80%
发文量
0
审稿时长
>12 weeks
期刊介绍: The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted. The main theme of the Journal is the wind effects on structures. Areas covered by the journal include: Wind loads and structural response, Bluff-body aerodynamics, Computational method, Wind tunnel modeling, Local wind environment, Codes and regulations, Wind effects on large scale structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信