基于距离变换映射和SVM分类器的自中心图像手部部分分割

S. Nguyen, Thi-Thu-Hong Le, Thai-Hoc Lu, Trung-Thanh Nguyen, Quang-Khai Tran, Hai Vu
{"title":"基于距离变换映射和SVM分类器的自中心图像手部部分分割","authors":"S. Nguyen, Thi-Thu-Hong Le, Thai-Hoc Lu, Trung-Thanh Nguyen, Quang-Khai Tran, Hai Vu","doi":"10.1109/RIVF51545.2021.9642097","DOIUrl":null,"url":null,"abstract":"Forearm and palm segmentation is a crucial element in the hand-pose estimation and mobility of the arms and hands estimation. However, hand parts separations (i.e, forearm and palm) from egocentric images have less been explored. In this study, we propose a novel hand forearm and palm segmentation method using the distance transformation map and an SVM classifier. First, we use a distance transformation map of the hand mask to find circles inscribing on the hand mask. These circles are vectored and construct an SVM classifier to predict the correct circle for approximating the palm region. Based on the predicted palm area, we propose a method for forearm and palm segmentations. The proposed method is evaluated on the rehabilitation dataset which includes egocentric hand mask images extracted from the hand rehabilitation exercise egocentric images. The results show that the proposed method successfully segments hand and forearm with high accuracy and requires low computational time.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"40 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier\",\"authors\":\"S. Nguyen, Thi-Thu-Hong Le, Thai-Hoc Lu, Trung-Thanh Nguyen, Quang-Khai Tran, Hai Vu\",\"doi\":\"10.1109/RIVF51545.2021.9642097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forearm and palm segmentation is a crucial element in the hand-pose estimation and mobility of the arms and hands estimation. However, hand parts separations (i.e, forearm and palm) from egocentric images have less been explored. In this study, we propose a novel hand forearm and palm segmentation method using the distance transformation map and an SVM classifier. First, we use a distance transformation map of the hand mask to find circles inscribing on the hand mask. These circles are vectored and construct an SVM classifier to predict the correct circle for approximating the palm region. Based on the predicted palm area, we propose a method for forearm and palm segmentations. The proposed method is evaluated on the rehabilitation dataset which includes egocentric hand mask images extracted from the hand rehabilitation exercise egocentric images. The results show that the proposed method successfully segments hand and forearm with high accuracy and requires low computational time.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"40 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

前臂和手掌的分割是手部姿态估计和手臂和手的机动性估计的关键因素。然而,从以自我为中心的图像中分离手部部位(即前臂和手掌)的研究却很少。在这项研究中,我们提出了一种新的手前臂和手掌的分割方法,使用距离变换图和支持向量机分类器。首先,我们使用手部遮罩的距离变换图来寻找刻写在手部遮罩上的圆。这些圆被向量化并构造一个支持向量机分类器来预测逼近手掌区域的正确圆。基于预测的手掌面积,我们提出了前臂和手掌的分割方法。在康复数据集上对该方法进行了评估,该数据集包括从手部康复训练的自我中心图像中提取的自我中心手面具图像。结果表明,该方法能较好地分割手和前臂,分割精度高,计算时间短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier
Forearm and palm segmentation is a crucial element in the hand-pose estimation and mobility of the arms and hands estimation. However, hand parts separations (i.e, forearm and palm) from egocentric images have less been explored. In this study, we propose a novel hand forearm and palm segmentation method using the distance transformation map and an SVM classifier. First, we use a distance transformation map of the hand mask to find circles inscribing on the hand mask. These circles are vectored and construct an SVM classifier to predict the correct circle for approximating the palm region. Based on the predicted palm area, we propose a method for forearm and palm segmentations. The proposed method is evaluated on the rehabilitation dataset which includes egocentric hand mask images extracted from the hand rehabilitation exercise egocentric images. The results show that the proposed method successfully segments hand and forearm with high accuracy and requires low computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信