具有有限不变指标曲面的曲线图 \(1\)

Pub Date : 2022-06-28 DOI:10.3336/gm.57.1.08
Justin Lanier, Marissa Loving
{"title":"具有有限不变指标曲面的曲线图 \\(1\\)","authors":"Justin Lanier, Marissa Loving","doi":"10.3336/gm.57.1.08","DOIUrl":null,"url":null,"abstract":"In this note we make progress toward a conjecture of Durham–Fanoni–Vlamis, showing that every infinite-type surface with fi­ni­te-invariance index \\(1\\) and no nondisplaceable compact subsurfaces fails to have a good graph of curves, that is, a connected graph where vertices represent homotopy classes of essential simple closed curves and with a natural mapping class group action having infinite diameter orbits. Our arguments use tools developed by Mann–Rafi in their study of the coarse geometry of big mapping class groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Graphs of curves for surfaces with finite-invariance index \\\\(1\\\\)\",\"authors\":\"Justin Lanier, Marissa Loving\",\"doi\":\"10.3336/gm.57.1.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we make progress toward a conjecture of Durham–Fanoni–Vlamis, showing that every infinite-type surface with fi­ni­te-invariance index \\\\(1\\\\) and no nondisplaceable compact subsurfaces fails to have a good graph of curves, that is, a connected graph where vertices represent homotopy classes of essential simple closed curves and with a natural mapping class group action having infinite diameter orbits. Our arguments use tools developed by Mann–Rafi in their study of the coarse geometry of big mapping class groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.57.1.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.1.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这篇文章中,我们对Durham-Fanoni-Vlamis的一个猜想取得了进展,证明了每一个具有fi - ni -t -invariance指标\(1\)且没有不可置换紧致子曲面的无限型曲面都不可能有一个好的曲线图,即顶点表示本质简单闭曲线的同伦类且具有具有无限直径轨道的自然映射类群作用的连通图。我们的论证使用了Mann-Rafi在研究大映射类群的粗糙几何时开发的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Graphs of curves for surfaces with finite-invariance index \(1\)
In this note we make progress toward a conjecture of Durham–Fanoni–Vlamis, showing that every infinite-type surface with fi­ni­te-invariance index \(1\) and no nondisplaceable compact subsurfaces fails to have a good graph of curves, that is, a connected graph where vertices represent homotopy classes of essential simple closed curves and with a natural mapping class group action having infinite diameter orbits. Our arguments use tools developed by Mann–Rafi in their study of the coarse geometry of big mapping class groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信