基于EPEX订单的神经网络电价预测

Q3 Mathematics
Simon Schnürch, A. Wagner
{"title":"基于EPEX订单的神经网络电价预测","authors":"Simon Schnürch, A. Wagner","doi":"10.1080/1350486x.2020.1805337","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper employs machine learning algorithms to forecast German electricity spot market prices. The forecasts utilize in particular bid and ask order book data from the spot market but also fundamental market data like renewable infeed and expected total demand. Appropriate feature extraction for the order book data is developed proceeding from existing literature. Using cross-validation to optimize hyperparameters, neural networks and random forests are fit to the data. Their in-sample and out-of-sample performance is compared to statistical reference models. The machine learning models outperform traditional approaches.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Electricity Price Forecasting with Neural Networks on EPEX Order Books\",\"authors\":\"Simon Schnürch, A. Wagner\",\"doi\":\"10.1080/1350486x.2020.1805337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper employs machine learning algorithms to forecast German electricity spot market prices. The forecasts utilize in particular bid and ask order book data from the spot market but also fundamental market data like renewable infeed and expected total demand. Appropriate feature extraction for the order book data is developed proceeding from existing literature. Using cross-validation to optimize hyperparameters, neural networks and random forests are fit to the data. Their in-sample and out-of-sample performance is compared to statistical reference models. The machine learning models outperform traditional approaches.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486x.2020.1805337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486x.2020.1805337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

摘要

摘要本文采用机器学习算法对德国电力现货市场价格进行预测。该预测特别利用了现货市场的买卖订单数据,也利用了可再生能源输入和预期总需求等基本市场数据。在现有文献的基础上,对订单数据进行了适当的特征提取。利用交叉验证优化超参数,神经网络和随机森林对数据进行拟合。它们的样本内和样本外性能与统计参考模型进行了比较。机器学习模型优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electricity Price Forecasting with Neural Networks on EPEX Order Books
ABSTRACT This paper employs machine learning algorithms to forecast German electricity spot market prices. The forecasts utilize in particular bid and ask order book data from the spot market but also fundamental market data like renewable infeed and expected total demand. Appropriate feature extraction for the order book data is developed proceeding from existing literature. Using cross-validation to optimize hyperparameters, neural networks and random forests are fit to the data. Their in-sample and out-of-sample performance is compared to statistical reference models. The machine learning models outperform traditional approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信