工业应用

K. Mengersen, Earl W. Duncan, Julyan Arbel, C. Alston-Knox, Nicole M White
{"title":"工业应用","authors":"K. Mengersen, Earl W. Duncan, Julyan Arbel, C. Alston-Knox, Nicole M White","doi":"10.1201/9780429055911-15","DOIUrl":null,"url":null,"abstract":"This chapter describes the middle ground and include activities that have a commercial focus. It shows the wide diversity of applications of mixture models to problems in industry, and the potential advantages of these approaches, through a series of case studies. The chapter focuses on the iconic and pervasive need for process monitoring, and reviews a range of mixture approaches that have been proposed to tackle complex multimodal and dynamic or online processes. It also focuses on mixture approaches to resource allocation, applied here in a spatial health context but applicable more generally. The chapter provides a more detailed description of a multivariate Gaussian mixture approach to a biosecurity risk assessment problem, using big data in the form of satellite imagery. It argues that a detailed description of a mixture model, this time using a nonparametric formulation, for assessing an industrial impact, notably the influence of a toxic spill on soil biodiversity.","PeriodicalId":12943,"journal":{"name":"Handbook of Mixture Analysis","volume":"203 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications in Industry\",\"authors\":\"K. Mengersen, Earl W. Duncan, Julyan Arbel, C. Alston-Knox, Nicole M White\",\"doi\":\"10.1201/9780429055911-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter describes the middle ground and include activities that have a commercial focus. It shows the wide diversity of applications of mixture models to problems in industry, and the potential advantages of these approaches, through a series of case studies. The chapter focuses on the iconic and pervasive need for process monitoring, and reviews a range of mixture approaches that have been proposed to tackle complex multimodal and dynamic or online processes. It also focuses on mixture approaches to resource allocation, applied here in a spatial health context but applicable more generally. The chapter provides a more detailed description of a multivariate Gaussian mixture approach to a biosecurity risk assessment problem, using big data in the form of satellite imagery. It argues that a detailed description of a mixture model, this time using a nonparametric formulation, for assessing an industrial impact, notably the influence of a toxic spill on soil biodiversity.\",\"PeriodicalId\":12943,\"journal\":{\"name\":\"Handbook of Mixture Analysis\",\"volume\":\"203 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Mixture Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429055911-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Mixture Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429055911-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章描述了中间地带,包括以商业为重点的活动。通过一系列案例研究,它展示了混合模型在工业问题中的广泛应用,以及这些方法的潜在优势。本章着重于过程监控的标志性和普遍的需要,并审查了一系列混合方法,已提出解决复杂的多模态和动态或在线过程。它还侧重于资源分配的混合方法,在这里适用于空间卫生背景,但更普遍适用。本章使用卫星图像形式的大数据,对生物安全风险评估问题的多元高斯混合方法进行了更详细的描述。它认为,混合模型的详细描述,这一次使用非参数公式,用于评估工业影响,特别是有毒物质泄漏对土壤生物多样性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications in Industry
This chapter describes the middle ground and include activities that have a commercial focus. It shows the wide diversity of applications of mixture models to problems in industry, and the potential advantages of these approaches, through a series of case studies. The chapter focuses on the iconic and pervasive need for process monitoring, and reviews a range of mixture approaches that have been proposed to tackle complex multimodal and dynamic or online processes. It also focuses on mixture approaches to resource allocation, applied here in a spatial health context but applicable more generally. The chapter provides a more detailed description of a multivariate Gaussian mixture approach to a biosecurity risk assessment problem, using big data in the form of satellite imagery. It argues that a detailed description of a mixture model, this time using a nonparametric formulation, for assessing an industrial impact, notably the influence of a toxic spill on soil biodiversity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信