L. Prieto-Rodríguez, I. Oller, A. Agüera, S. Malato
{"title":"固定化生物质反应器与太阳能- fenton三次处理联合去除城市污水中的有机微污染物","authors":"L. Prieto-Rodríguez, I. Oller, A. Agüera, S. Malato","doi":"10.1515/jaots-2016-0192","DOIUrl":null,"url":null,"abstract":"Abstract Municipal wastewater treatment plants (MWTPs) have become one of the main sources of water for potential reuse. However, some pharmaceuticals, pesticides, hormones and others organics escape conventional wastewater treatments, and therefore, new technologies must be applied to overcome the problem. This article presents an efficient alternative that combines an aerobic immobilized biomass reactor (IBR) with a solar photo-Fenton process as a tertiary treatment. Real municipal wastewater was treated in the IBR system in batch and continuous modes. Micro-pollutants were monitored by using an advanced analytical procedure consisting of pre-concentration of samples by solid phase extraction (SPE) followed by liquid chromatography coupled to mass spectrometry. Results were compared with those observed in the MWTP secondary conventional activated sludge treatment. Effluents from the IBR, operating at the maximum treatment capacity, were treated in a previously optimized solar photo-Fenton pilot plant as a tertiary treatment to entirely eliminate remnant micro-pollutants.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Elimination of organic micro-contaminants in municipal wastewater by a combined immobilized biomass reactor and solar photo-Fenton tertiary treatment\",\"authors\":\"L. Prieto-Rodríguez, I. Oller, A. Agüera, S. Malato\",\"doi\":\"10.1515/jaots-2016-0192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Municipal wastewater treatment plants (MWTPs) have become one of the main sources of water for potential reuse. However, some pharmaceuticals, pesticides, hormones and others organics escape conventional wastewater treatments, and therefore, new technologies must be applied to overcome the problem. This article presents an efficient alternative that combines an aerobic immobilized biomass reactor (IBR) with a solar photo-Fenton process as a tertiary treatment. Real municipal wastewater was treated in the IBR system in batch and continuous modes. Micro-pollutants were monitored by using an advanced analytical procedure consisting of pre-concentration of samples by solid phase extraction (SPE) followed by liquid chromatography coupled to mass spectrometry. Results were compared with those observed in the MWTP secondary conventional activated sludge treatment. Effluents from the IBR, operating at the maximum treatment capacity, were treated in a previously optimized solar photo-Fenton pilot plant as a tertiary treatment to entirely eliminate remnant micro-pollutants.\",\"PeriodicalId\":14870,\"journal\":{\"name\":\"Journal of Advanced Oxidation Technologies\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Oxidation Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jaots-2016-0192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
Elimination of organic micro-contaminants in municipal wastewater by a combined immobilized biomass reactor and solar photo-Fenton tertiary treatment
Abstract Municipal wastewater treatment plants (MWTPs) have become one of the main sources of water for potential reuse. However, some pharmaceuticals, pesticides, hormones and others organics escape conventional wastewater treatments, and therefore, new technologies must be applied to overcome the problem. This article presents an efficient alternative that combines an aerobic immobilized biomass reactor (IBR) with a solar photo-Fenton process as a tertiary treatment. Real municipal wastewater was treated in the IBR system in batch and continuous modes. Micro-pollutants were monitored by using an advanced analytical procedure consisting of pre-concentration of samples by solid phase extraction (SPE) followed by liquid chromatography coupled to mass spectrometry. Results were compared with those observed in the MWTP secondary conventional activated sludge treatment. Effluents from the IBR, operating at the maximum treatment capacity, were treated in a previously optimized solar photo-Fenton pilot plant as a tertiary treatment to entirely eliminate remnant micro-pollutants.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs