Trans-ResNet:整合变压器和cnn用于阿尔茨海默病分类

Chao Li, Yue Cui, Na Luo, Yong Liu, P. Bourgeat, J. Fripp, Tianzi Jiang
{"title":"Trans-ResNet:整合变压器和cnn用于阿尔茨海默病分类","authors":"Chao Li, Yue Cui, Na Luo, Yong Liu, P. Bourgeat, J. Fripp, Tianzi Jiang","doi":"10.1109/ISBI52829.2022.9761549","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have demonstrated excellent performance for brain disease classification from MRI data. However, CNNs lack the ability to capture global dependencies. The recently proposed architecture called Transformer uses attention mechanisms to match or even outperform CNNs on various vision tasks. Transformer’s performance is dependent on access to large training datasets, but sample sizes for most brain MRI datasets are relatively small. To overcome this limitation, we propose Trans-ResNet, a novel architecture which integrates the advantages of both CNNs and Transformers. In addition, we pre-trained our Trans-ResNet on a large-scale dataset on the task of brain age estimation for higher performance. Using three neuroimaging cohorts (UK Biobank, AIBL, ADNI), we demonstrated that our Trans-ResNet achieved higher classification accuracy on Alzheimer disease prediction compared to other state-of-the-art CNN-based methods.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"30 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Trans-ResNet: Integrating Transformers and CNNs for Alzheimer’s disease classification\",\"authors\":\"Chao Li, Yue Cui, Na Luo, Yong Liu, P. Bourgeat, J. Fripp, Tianzi Jiang\",\"doi\":\"10.1109/ISBI52829.2022.9761549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) have demonstrated excellent performance for brain disease classification from MRI data. However, CNNs lack the ability to capture global dependencies. The recently proposed architecture called Transformer uses attention mechanisms to match or even outperform CNNs on various vision tasks. Transformer’s performance is dependent on access to large training datasets, but sample sizes for most brain MRI datasets are relatively small. To overcome this limitation, we propose Trans-ResNet, a novel architecture which integrates the advantages of both CNNs and Transformers. In addition, we pre-trained our Trans-ResNet on a large-scale dataset on the task of brain age estimation for higher performance. Using three neuroimaging cohorts (UK Biobank, AIBL, ADNI), we demonstrated that our Trans-ResNet achieved higher classification accuracy on Alzheimer disease prediction compared to other state-of-the-art CNN-based methods.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"30 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

卷积神经网络(cnn)在从MRI数据中对脑部疾病进行分类方面表现出优异的性能。然而,cnn缺乏捕捉全局依赖关系的能力。最近提出的名为Transformer的架构使用注意力机制在各种视觉任务上匹配甚至超过cnn。Transformer的性能依赖于对大型训练数据集的访问,但大多数脑MRI数据集的样本量相对较小。为了克服这一限制,我们提出了Trans-ResNet,一种集成了cnn和transformer优点的新架构。此外,我们在一个大规模的数据集上对Trans-ResNet进行了预训练,以获得更高的性能。使用三个神经成像队列(UK Biobank, AIBL, ADNI),我们证明了与其他最先进的基于cnn的方法相比,我们的Trans-ResNet在阿尔茨海默病预测方面取得了更高的分类准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trans-ResNet: Integrating Transformers and CNNs for Alzheimer’s disease classification
Convolutional neural networks (CNNs) have demonstrated excellent performance for brain disease classification from MRI data. However, CNNs lack the ability to capture global dependencies. The recently proposed architecture called Transformer uses attention mechanisms to match or even outperform CNNs on various vision tasks. Transformer’s performance is dependent on access to large training datasets, but sample sizes for most brain MRI datasets are relatively small. To overcome this limitation, we propose Trans-ResNet, a novel architecture which integrates the advantages of both CNNs and Transformers. In addition, we pre-trained our Trans-ResNet on a large-scale dataset on the task of brain age estimation for higher performance. Using three neuroimaging cohorts (UK Biobank, AIBL, ADNI), we demonstrated that our Trans-ResNet achieved higher classification accuracy on Alzheimer disease prediction compared to other state-of-the-art CNN-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信