自适应多媒体内容个性化

N. Doulamis, P. Georgilakis
{"title":"自适应多媒体内容个性化","authors":"N. Doulamis, P. Georgilakis","doi":"10.1109/ISCAS.2004.1329240","DOIUrl":null,"url":null,"abstract":"Modeling multimedia content by identifying semantically meaningful entities can be arduous because it is difficult to simulate human perception. However, by creating an algorithm to respond interactively to user preference, content-retrieval systems can become more efficient and easier to use. In this paper, we investigate adaptive relevance feedback algorithms for interactive multimedia content personalization. In particular two interesting scenarios are examined. The first uses a weighted cross correlation similarity measure for ranking multimedia data. The second exploits concepts of functional analysis to model the similarity measure as a non-linear function, the type of which is estimated by the users' preferences. The algorithms are computationally efficient and they can be recursively implemented.","PeriodicalId":6445,"journal":{"name":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","volume":"133 1","pages":"II-189"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive multimedia content personalization\",\"authors\":\"N. Doulamis, P. Georgilakis\",\"doi\":\"10.1109/ISCAS.2004.1329240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling multimedia content by identifying semantically meaningful entities can be arduous because it is difficult to simulate human perception. However, by creating an algorithm to respond interactively to user preference, content-retrieval systems can become more efficient and easier to use. In this paper, we investigate adaptive relevance feedback algorithms for interactive multimedia content personalization. In particular two interesting scenarios are examined. The first uses a weighted cross correlation similarity measure for ranking multimedia data. The second exploits concepts of functional analysis to model the similarity measure as a non-linear function, the type of which is estimated by the users' preferences. The algorithms are computationally efficient and they can be recursively implemented.\",\"PeriodicalId\":6445,\"journal\":{\"name\":\"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)\",\"volume\":\"133 1\",\"pages\":\"II-189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2004.1329240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2004.1329240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通过识别语义上有意义的实体对多媒体内容进行建模是非常困难的,因为很难模拟人类的感知。然而,通过创建一种算法来交互地响应用户偏好,内容检索系统可以变得更高效,更易于使用。本文研究了交互式多媒体内容个性化的自适应相关反馈算法。本文特别研究了两个有趣的场景。第一种方法使用加权交叉相关相似性度量对多媒体数据进行排序。第二种方法利用功能分析的概念将相似性度量建模为非线性函数,其类型由用户的偏好估计。这些算法计算效率高,并且可以递归实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive multimedia content personalization
Modeling multimedia content by identifying semantically meaningful entities can be arduous because it is difficult to simulate human perception. However, by creating an algorithm to respond interactively to user preference, content-retrieval systems can become more efficient and easier to use. In this paper, we investigate adaptive relevance feedback algorithms for interactive multimedia content personalization. In particular two interesting scenarios are examined. The first uses a weighted cross correlation similarity measure for ranking multimedia data. The second exploits concepts of functional analysis to model the similarity measure as a non-linear function, the type of which is estimated by the users' preferences. The algorithms are computationally efficient and they can be recursively implemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信