有限域上的新置换逆Dickson多项式

IF 0.4 4区 数学 Q4 MATHEMATICS
K. Cheng
{"title":"有限域上的新置换逆Dickson多项式","authors":"K. Cheng","doi":"10.1142/s1005386723000093","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be an odd prime, and [Formula: see text], [Formula: see text] be nonnegative integers. Let [Formula: see text] be the reversed Dickson polynomial of the [Formula: see text]-th kind. In this paper, by using Hermite's criterion, we study the permutational properties of the reversed Dickson polynomials [Formula: see text] over finite fields in the case of [Formula: see text] with [Formula: see text]. In particular, we provide some precise characterizations for [Formula: see text] being permutation polynomials over finite fields with characteristic [Formula: see text] when [Formula: see text], or [Formula: see text], or [Formula: see text].","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Permutation Reversed Dickson Polynomials over Finite Fields\",\"authors\":\"K. Cheng\",\"doi\":\"10.1142/s1005386723000093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be an odd prime, and [Formula: see text], [Formula: see text] be nonnegative integers. Let [Formula: see text] be the reversed Dickson polynomial of the [Formula: see text]-th kind. In this paper, by using Hermite's criterion, we study the permutational properties of the reversed Dickson polynomials [Formula: see text] over finite fields in the case of [Formula: see text] with [Formula: see text]. In particular, we provide some precise characterizations for [Formula: see text] being permutation polynomials over finite fields with characteristic [Formula: see text] when [Formula: see text], or [Formula: see text], or [Formula: see text].\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000093\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000093","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]为奇素数,[公式:见文],[公式:见文]为非负整数。设[公式:见文]为[公式:见文]-第一类的反Dickson多项式。本文利用Hermite判据,研究了有限域上[公式:见文]与[公式:见文]在[公式:见文]情况下的反向Dickson多项式[公式:见文]的置换性质。特别地,我们提供了[公式:见文]在[公式:见文],或[公式:见文],或[公式:见文]时作为有限域上具有特征[公式:见文]的置换多项式的一些精确表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Permutation Reversed Dickson Polynomials over Finite Fields
Let [Formula: see text] be an odd prime, and [Formula: see text], [Formula: see text] be nonnegative integers. Let [Formula: see text] be the reversed Dickson polynomial of the [Formula: see text]-th kind. In this paper, by using Hermite's criterion, we study the permutational properties of the reversed Dickson polynomials [Formula: see text] over finite fields in the case of [Formula: see text] with [Formula: see text]. In particular, we provide some precise characterizations for [Formula: see text] being permutation polynomials over finite fields with characteristic [Formula: see text] when [Formula: see text], or [Formula: see text], or [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信