一种使用同义物化查询快速检索数据仓库查询结果的方法

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
S. Chakraborty, Jyotika Doshi
{"title":"一种使用同义物化查询快速检索数据仓库查询结果的方法","authors":"S. Chakraborty, Jyotika Doshi","doi":"10.4018/IJDWM.2021040105","DOIUrl":null,"url":null,"abstract":"The enterprise data warehouse stores an enormous amount of data collected from multiple sources for analytical processing and strategic decision making. The analytical processing is done using online analytical processing (OLAP) queries where the performance in terms of result retrieval time is an important factor. The major existing approaches for retrieving results from a data warehouse are multidimensional data cubes and materialized views that incur more storage, processing, and maintenance costs. The present study strives to achieve a simpler and faster query result retrieval approach from data warehouse with reduced storage space and minimal maintenance cost. The execution time of frequent queries is saved in the present approach by storing their results for reuse when the query is fired next time. The executed OLAP queries are stored along with the query results and necessary metadata information in a relational database is referred as materialized query database (MQDB). The tables, fields, functions, relational operators, and criteria used in the input query are matched with those of stored query, and if they are found to be same, then the input query and the stored query are considered as a synonymous query. Further, the stored query is checked for incremental updates, and if no incremental updates are required, then the existing stored results are fetched from MQDB. On the other hand, if the stored query requires an incremental update of results, then the processing of only incremental result is considered from data marts. The performance of MQDB model is evaluated by comparing with the developed novel approach, and it is observed that, using MQDB, a significant reduction in query processing time is achieved as compared to the major existing approaches. The developed model will be useful for the organizations keeping their historical records in the data warehouse.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Approach for Retrieving Faster Query Results From Data Warehouse Using Synonymous Materialized Queries\",\"authors\":\"S. Chakraborty, Jyotika Doshi\",\"doi\":\"10.4018/IJDWM.2021040105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The enterprise data warehouse stores an enormous amount of data collected from multiple sources for analytical processing and strategic decision making. The analytical processing is done using online analytical processing (OLAP) queries where the performance in terms of result retrieval time is an important factor. The major existing approaches for retrieving results from a data warehouse are multidimensional data cubes and materialized views that incur more storage, processing, and maintenance costs. The present study strives to achieve a simpler and faster query result retrieval approach from data warehouse with reduced storage space and minimal maintenance cost. The execution time of frequent queries is saved in the present approach by storing their results for reuse when the query is fired next time. The executed OLAP queries are stored along with the query results and necessary metadata information in a relational database is referred as materialized query database (MQDB). The tables, fields, functions, relational operators, and criteria used in the input query are matched with those of stored query, and if they are found to be same, then the input query and the stored query are considered as a synonymous query. Further, the stored query is checked for incremental updates, and if no incremental updates are required, then the existing stored results are fetched from MQDB. On the other hand, if the stored query requires an incremental update of results, then the processing of only incremental result is considered from data marts. The performance of MQDB model is evaluated by comparing with the developed novel approach, and it is observed that, using MQDB, a significant reduction in query processing time is achieved as compared to the major existing approaches. The developed model will be useful for the organizations keeping their historical records in the data warehouse.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/IJDWM.2021040105\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJDWM.2021040105","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

企业数据仓库存储从多个来源收集的大量数据,用于分析处理和战略决策。分析处理使用在线分析处理(OLAP)查询完成,其中结果检索时间方面的性能是一个重要因素。从数据仓库中检索结果的现有主要方法是多维数据集和物化视图,这会产生更多的存储、处理和维护成本。本研究力求在减少存储空间和最小化维护成本的前提下,实现一种更简单、更快速的数据仓库查询结果检索方法。在当前方法中,存储频繁查询的结果以便下次触发查询时重用,从而节省了频繁查询的执行时间。执行的OLAP查询与查询结果和必要的元数据信息一起存储在关系数据库中,称为物化查询数据库(MQDB)。输入查询中使用的表、字段、函数、关系运算符和条件与存储查询中的表、字段、函数、关系运算符和条件相匹配,如果发现它们相同,则将输入查询和存储查询视为同义查询。此外,将检查存储的查询是否有增量更新,如果不需要增量更新,则从MQDB获取现有的存储结果。另一方面,如果存储的查询需要对结果进行增量更新,则只考虑对数据集市中的增量结果进行处理。通过与开发的新方法进行比较来评估MQDB模型的性能,并且可以观察到,与现有的主要方法相比,使用MQDB可以显著减少查询处理时间。开发的模型对于在数据仓库中保存历史记录的组织非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approach for Retrieving Faster Query Results From Data Warehouse Using Synonymous Materialized Queries
The enterprise data warehouse stores an enormous amount of data collected from multiple sources for analytical processing and strategic decision making. The analytical processing is done using online analytical processing (OLAP) queries where the performance in terms of result retrieval time is an important factor. The major existing approaches for retrieving results from a data warehouse are multidimensional data cubes and materialized views that incur more storage, processing, and maintenance costs. The present study strives to achieve a simpler and faster query result retrieval approach from data warehouse with reduced storage space and minimal maintenance cost. The execution time of frequent queries is saved in the present approach by storing their results for reuse when the query is fired next time. The executed OLAP queries are stored along with the query results and necessary metadata information in a relational database is referred as materialized query database (MQDB). The tables, fields, functions, relational operators, and criteria used in the input query are matched with those of stored query, and if they are found to be same, then the input query and the stored query are considered as a synonymous query. Further, the stored query is checked for incremental updates, and if no incremental updates are required, then the existing stored results are fetched from MQDB. On the other hand, if the stored query requires an incremental update of results, then the processing of only incremental result is considered from data marts. The performance of MQDB model is evaluated by comparing with the developed novel approach, and it is observed that, using MQDB, a significant reduction in query processing time is achieved as compared to the major existing approaches. The developed model will be useful for the organizations keeping their historical records in the data warehouse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信