{"title":"费托合成的动力学和选择性:文献综述","authors":"G. V. D. Laan, A. Beenackers","doi":"10.1081/CR-100101170","DOIUrl":null,"url":null,"abstract":"A critical review of the kinetics and selectivity of the Fischer–Tropsch synthesis (FTS) is given. The focus is on reaction mechanisms and kinetics of the water–gas shift and Fischer–Tropsch (FT) reactions. New developments in the product selectivity as well as the overall kinetics are reviewed. It is concluded that the development of rate equations for the FTS should be based on realistic mechanistic schemes. Qualitatively, there is agreement that the product distribution is affected by the occurrence of secondary reactions (hydrogenation, isomerization, reinsertion, and hydrogenolysis). At high CO and H2O pressures, the most important secondary reaction is readsorption of olefins, resulting in initiation of chain growth processes. Secondary hydrogenation of α-olefins may occur and depends on the catalytic system and the process conditions. The rates of the secondary reactions increase exponentially with chain length. Much controversy exists about whether these chain-length dependencies stem from differe...","PeriodicalId":50986,"journal":{"name":"Catalysis Reviews-Science and Engineering","volume":"3 1","pages":"255-318"},"PeriodicalIF":9.3000,"publicationDate":"1999-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1000","resultStr":"{\"title\":\"Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review\",\"authors\":\"G. V. D. Laan, A. Beenackers\",\"doi\":\"10.1081/CR-100101170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A critical review of the kinetics and selectivity of the Fischer–Tropsch synthesis (FTS) is given. The focus is on reaction mechanisms and kinetics of the water–gas shift and Fischer–Tropsch (FT) reactions. New developments in the product selectivity as well as the overall kinetics are reviewed. It is concluded that the development of rate equations for the FTS should be based on realistic mechanistic schemes. Qualitatively, there is agreement that the product distribution is affected by the occurrence of secondary reactions (hydrogenation, isomerization, reinsertion, and hydrogenolysis). At high CO and H2O pressures, the most important secondary reaction is readsorption of olefins, resulting in initiation of chain growth processes. Secondary hydrogenation of α-olefins may occur and depends on the catalytic system and the process conditions. The rates of the secondary reactions increase exponentially with chain length. Much controversy exists about whether these chain-length dependencies stem from differe...\",\"PeriodicalId\":50986,\"journal\":{\"name\":\"Catalysis Reviews-Science and Engineering\",\"volume\":\"3 1\",\"pages\":\"255-318\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"1999-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1000\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Reviews-Science and Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1081/CR-100101170\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews-Science and Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1081/CR-100101170","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review
A critical review of the kinetics and selectivity of the Fischer–Tropsch synthesis (FTS) is given. The focus is on reaction mechanisms and kinetics of the water–gas shift and Fischer–Tropsch (FT) reactions. New developments in the product selectivity as well as the overall kinetics are reviewed. It is concluded that the development of rate equations for the FTS should be based on realistic mechanistic schemes. Qualitatively, there is agreement that the product distribution is affected by the occurrence of secondary reactions (hydrogenation, isomerization, reinsertion, and hydrogenolysis). At high CO and H2O pressures, the most important secondary reaction is readsorption of olefins, resulting in initiation of chain growth processes. Secondary hydrogenation of α-olefins may occur and depends on the catalytic system and the process conditions. The rates of the secondary reactions increase exponentially with chain length. Much controversy exists about whether these chain-length dependencies stem from differe...
期刊介绍:
Catalysis Reviews is dedicated to fostering interdisciplinary perspectives in catalytic science and engineering, catering to a global audience of industrial and academic researchers. This journal serves as a bridge between the realms of heterogeneous, homogeneous, and bio-catalysis, providing a crucial and critical evaluation of the current state of catalytic science and engineering. Published topics encompass advances in technology and theory, engineering and chemical aspects of catalytic reactions, reactor design, computer models, analytical tools, and statistical evaluations.