Tanawat Laopaiboon, W. Ongsakul, Pradya Panyainkaew, Nikhil Sasidharan
{"title":"利用反向传播人工神经网络的小时前太阳预报程序","authors":"Tanawat Laopaiboon, W. Ongsakul, Pradya Panyainkaew, Nikhil Sasidharan","doi":"10.23919/ICUE-GESD.2018.8635756","DOIUrl":null,"url":null,"abstract":"Solar photovoltaic power generation highly relies on solar irradiance, cloud cover variability, temperature, atmospheric aerosol levels, and other atmosphere parameters. Accurate forecasting of solar power is crucial to very short-term generation scheduling and on-line secure economic operation. In this paper, hour-ahead forecasting using BP-ANN is proposed. The inputs of BP-ANN include previous intervals of solar irradiation, moving average temperature, moving average relative humidity, time of the day and day of the year index. The supervised learning ANN render a higher accuracy with the good convergence mapping between input to target output data. The simulation of hour-ahead solar irradiation forecasting results from ANN render a better performance compared with autoregressive moving average model in terms of mean absolute Error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), mean bias error (MBE) and correlation coefficient (Corr).","PeriodicalId":6584,"journal":{"name":"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)","volume":"221 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Hour-Ahead Solar Forecasting Program Using Back Propagation Artificial Neural Network\",\"authors\":\"Tanawat Laopaiboon, W. Ongsakul, Pradya Panyainkaew, Nikhil Sasidharan\",\"doi\":\"10.23919/ICUE-GESD.2018.8635756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar photovoltaic power generation highly relies on solar irradiance, cloud cover variability, temperature, atmospheric aerosol levels, and other atmosphere parameters. Accurate forecasting of solar power is crucial to very short-term generation scheduling and on-line secure economic operation. In this paper, hour-ahead forecasting using BP-ANN is proposed. The inputs of BP-ANN include previous intervals of solar irradiation, moving average temperature, moving average relative humidity, time of the day and day of the year index. The supervised learning ANN render a higher accuracy with the good convergence mapping between input to target output data. The simulation of hour-ahead solar irradiation forecasting results from ANN render a better performance compared with autoregressive moving average model in terms of mean absolute Error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), mean bias error (MBE) and correlation coefficient (Corr).\",\"PeriodicalId\":6584,\"journal\":{\"name\":\"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)\",\"volume\":\"221 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICUE-GESD.2018.8635756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICUE-GESD.2018.8635756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hour-Ahead Solar Forecasting Program Using Back Propagation Artificial Neural Network
Solar photovoltaic power generation highly relies on solar irradiance, cloud cover variability, temperature, atmospheric aerosol levels, and other atmosphere parameters. Accurate forecasting of solar power is crucial to very short-term generation scheduling and on-line secure economic operation. In this paper, hour-ahead forecasting using BP-ANN is proposed. The inputs of BP-ANN include previous intervals of solar irradiation, moving average temperature, moving average relative humidity, time of the day and day of the year index. The supervised learning ANN render a higher accuracy with the good convergence mapping between input to target output data. The simulation of hour-ahead solar irradiation forecasting results from ANN render a better performance compared with autoregressive moving average model in terms of mean absolute Error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), mean bias error (MBE) and correlation coefficient (Corr).