A. Gordon, T. Graepel, Nicolas Rolland, Claudio V. Russo, J. Borgström, J. Guiver
{"title":"Tabular:一种模式驱动的概率编程语言","authors":"A. Gordon, T. Graepel, Nicolas Rolland, Claudio V. Russo, J. Borgström, J. Guiver","doi":"10.1145/2535838.2535850","DOIUrl":null,"url":null,"abstract":"We propose a new kind of probabilistic programming language for machine learning. We write programs simply by annotating existing relational schemas with probabilistic model expressions. We describe a detailed design of our language, Tabular, complete with formal semantics and type system. A rich series of examples illustrates the expressiveness of Tabular. We report an implementation, and show evidence of the succinctness of our notation relative to current best practice. Finally, we describe and verify a transformation of Tabular schemas so as to predict missing values in a concrete database. The ability to query for missing values provides a uniform interface to a wide variety of tasks, including classification, clustering, recommendation, and ranking.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Tabular: a schema-driven probabilistic programming language\",\"authors\":\"A. Gordon, T. Graepel, Nicolas Rolland, Claudio V. Russo, J. Borgström, J. Guiver\",\"doi\":\"10.1145/2535838.2535850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new kind of probabilistic programming language for machine learning. We write programs simply by annotating existing relational schemas with probabilistic model expressions. We describe a detailed design of our language, Tabular, complete with formal semantics and type system. A rich series of examples illustrates the expressiveness of Tabular. We report an implementation, and show evidence of the succinctness of our notation relative to current best practice. Finally, we describe and verify a transformation of Tabular schemas so as to predict missing values in a concrete database. The ability to query for missing values provides a uniform interface to a wide variety of tasks, including classification, clustering, recommendation, and ranking.\",\"PeriodicalId\":20683,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2535838.2535850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tabular: a schema-driven probabilistic programming language
We propose a new kind of probabilistic programming language for machine learning. We write programs simply by annotating existing relational schemas with probabilistic model expressions. We describe a detailed design of our language, Tabular, complete with formal semantics and type system. A rich series of examples illustrates the expressiveness of Tabular. We report an implementation, and show evidence of the succinctness of our notation relative to current best practice. Finally, we describe and verify a transformation of Tabular schemas so as to predict missing values in a concrete database. The ability to query for missing values provides a uniform interface to a wide variety of tasks, including classification, clustering, recommendation, and ranking.