耦合微谐振器含缺陷晶格中的极化子

Rumyantsev
{"title":"耦合微谐振器含缺陷晶格中的极化子","authors":"Rumyantsev","doi":"10.4172/2469-410X.1000E108","DOIUrl":null,"url":null,"abstract":"Results in crystal optics obtained during the past fifty years provide a solid foundation for the progress of modern photonics. Concepts developed in the physics of crystalline solids can potentially be applied to the physics of photonic super crystals. While the theory of impurity bands and excitons in semiconductor crystals has been constructed in 1970-1980, an analogous theory for photonic crystals is yet to be completed. Recent experiments and theoretical investigations reveal an intense interest for polartonic structures and systems of coupled micro resonators [1], whose applications include fabrication of clockworks of unprecedented accuracy [2,3] as well as the sources of coherent irradiation. There has been a significant advance in the photonics of imperfect structures. A number of our recent works have been devoted to optical activity of imperfect photonic crystals [4] and to dispersion of exciton-like electromagnetic excitations in non-ideal lattices of coupled micro resonators [5,6].","PeriodicalId":92245,"journal":{"name":"Journal of lasers, optics & photonics","volume":"15 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polaritons in Defect-Containing Lattice of Coupled Micro Resonators\",\"authors\":\"Rumyantsev\",\"doi\":\"10.4172/2469-410X.1000E108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results in crystal optics obtained during the past fifty years provide a solid foundation for the progress of modern photonics. Concepts developed in the physics of crystalline solids can potentially be applied to the physics of photonic super crystals. While the theory of impurity bands and excitons in semiconductor crystals has been constructed in 1970-1980, an analogous theory for photonic crystals is yet to be completed. Recent experiments and theoretical investigations reveal an intense interest for polartonic structures and systems of coupled micro resonators [1], whose applications include fabrication of clockworks of unprecedented accuracy [2,3] as well as the sources of coherent irradiation. There has been a significant advance in the photonics of imperfect structures. A number of our recent works have been devoted to optical activity of imperfect photonic crystals [4] and to dispersion of exciton-like electromagnetic excitations in non-ideal lattices of coupled micro resonators [5,6].\",\"PeriodicalId\":92245,\"journal\":{\"name\":\"Journal of lasers, optics & photonics\",\"volume\":\"15 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of lasers, optics & photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2469-410X.1000E108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers, optics & photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-410X.1000E108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近50年来晶体光学的研究成果为现代光子学的发展奠定了坚实的基础。在晶体固体物理学中发展的概念可以潜在地应用于光子超级晶体的物理学。虽然半导体晶体中杂质带和激子的理论在1970-1980年已经建立,但光子晶体的类似理论尚未完成。最近的实验和理论研究表明,人们对耦合微谐振器[1]的极tonic结构和系统产生了浓厚的兴趣,其应用包括制造前所未有的精度的时钟装置[2,3]以及相干辐照源。在不完美结构的光子学方面取得了重大进展。我们最近的一些工作致力于研究不完美光子晶体[4]的光学活性,以及耦合微谐振器非理想晶格中激子类电磁激励的色散[5,6]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polaritons in Defect-Containing Lattice of Coupled Micro Resonators
Results in crystal optics obtained during the past fifty years provide a solid foundation for the progress of modern photonics. Concepts developed in the physics of crystalline solids can potentially be applied to the physics of photonic super crystals. While the theory of impurity bands and excitons in semiconductor crystals has been constructed in 1970-1980, an analogous theory for photonic crystals is yet to be completed. Recent experiments and theoretical investigations reveal an intense interest for polartonic structures and systems of coupled micro resonators [1], whose applications include fabrication of clockworks of unprecedented accuracy [2,3] as well as the sources of coherent irradiation. There has been a significant advance in the photonics of imperfect structures. A number of our recent works have been devoted to optical activity of imperfect photonic crystals [4] and to dispersion of exciton-like electromagnetic excitations in non-ideal lattices of coupled micro resonators [5,6].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信