基于神经网络的气液两相流晶格Boltzmann前跟踪界面捕获方法

IF 1.1 4区 工程技术 Q4 MECHANICS
Bozhen Lai, Zhaoqing Ke, Zhiqiang Wang, Ronghua Zhu, Ruifeng Gao, Yu Mao, Ying Zhang
{"title":"基于神经网络的气液两相流晶格Boltzmann前跟踪界面捕获方法","authors":"Bozhen Lai, Zhaoqing Ke, Zhiqiang Wang, Ronghua Zhu, Ruifeng Gao, Yu Mao, Ying Zhang","doi":"10.1080/10618562.2023.2246398","DOIUrl":null,"url":null,"abstract":"This paper presents a new method that accurately captures the interface of gas–liquid two-phase flow using a neural network-based lattice Boltzmann front-tracking interface capturing method. The motion of a single free-falling droplet is simulated using the Front Tracking Method (FTM), enabling the acquisition of information regarding the velocity field and interface points. The velocity field and interface points from the simulations are then utilised to generate input and output datasets for training the neural network (NN) models. Subsequently, the trained Bayesian regularised Back Propagation Neural Network (BRBPNN) model is integrated into the Lattice Boltzmann method (LBM), utilising the velocity field obtained from LBM simulation as input. The predicted LBM interface exhibits remarkable agreement with the FTM interface, as evidenced by a high correlation coefficient of 0.99945 for the ordinate value of the interface point in both methods. Therefore, the proposed method achieves precise positioning of the phase interface of LBM.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"11 1","pages":"49 - 66"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lattice Boltzmann Front-Tracking Interface Capturing Method based on Neural Network for Gas-Liquid Two-Phase Flow\",\"authors\":\"Bozhen Lai, Zhaoqing Ke, Zhiqiang Wang, Ronghua Zhu, Ruifeng Gao, Yu Mao, Ying Zhang\",\"doi\":\"10.1080/10618562.2023.2246398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method that accurately captures the interface of gas–liquid two-phase flow using a neural network-based lattice Boltzmann front-tracking interface capturing method. The motion of a single free-falling droplet is simulated using the Front Tracking Method (FTM), enabling the acquisition of information regarding the velocity field and interface points. The velocity field and interface points from the simulations are then utilised to generate input and output datasets for training the neural network (NN) models. Subsequently, the trained Bayesian regularised Back Propagation Neural Network (BRBPNN) model is integrated into the Lattice Boltzmann method (LBM), utilising the velocity field obtained from LBM simulation as input. The predicted LBM interface exhibits remarkable agreement with the FTM interface, as evidenced by a high correlation coefficient of 0.99945 for the ordinate value of the interface point in both methods. Therefore, the proposed method achieves precise positioning of the phase interface of LBM.\",\"PeriodicalId\":56288,\"journal\":{\"name\":\"International Journal of Computational Fluid Dynamics\",\"volume\":\"11 1\",\"pages\":\"49 - 66\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10618562.2023.2246398\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2023.2246398","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于神经网络的晶格玻尔兹曼前沿跟踪界面捕获方法,可以准确地捕获气液两相流的界面。利用前沿跟踪方法(FTM)模拟单个自由落体液滴的运动,从而获得有关速度场和界面点的信息。然后利用仿真得到的速度场和界面点来生成用于训练神经网络(NN)模型的输入和输出数据集。随后,将训练好的贝叶斯正则化反向传播神经网络(BRBPNN)模型集成到晶格玻尔兹曼方法(LBM)中,利用LBM仿真得到的速度场作为输入。预测的LBM界面与FTM界面具有显著的一致性,两种方法中界面点纵坐标值的相关系数均为0.99945。因此,该方法实现了LBM相界面的精确定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lattice Boltzmann Front-Tracking Interface Capturing Method based on Neural Network for Gas-Liquid Two-Phase Flow
This paper presents a new method that accurately captures the interface of gas–liquid two-phase flow using a neural network-based lattice Boltzmann front-tracking interface capturing method. The motion of a single free-falling droplet is simulated using the Front Tracking Method (FTM), enabling the acquisition of information regarding the velocity field and interface points. The velocity field and interface points from the simulations are then utilised to generate input and output datasets for training the neural network (NN) models. Subsequently, the trained Bayesian regularised Back Propagation Neural Network (BRBPNN) model is integrated into the Lattice Boltzmann method (LBM), utilising the velocity field obtained from LBM simulation as input. The predicted LBM interface exhibits remarkable agreement with the FTM interface, as evidenced by a high correlation coefficient of 0.99945 for the ordinate value of the interface point in both methods. Therefore, the proposed method achieves precise positioning of the phase interface of LBM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.70%
发文量
25
审稿时长
3 months
期刊介绍: The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields. The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信