基于约束社会网络评级的改进电子商务环境下产品推荐神经网络技术

Lohith Ottikunta
{"title":"基于约束社会网络评级的改进电子商务环境下产品推荐神经网络技术","authors":"Lohith Ottikunta","doi":"10.1016/j.ijin.2022.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>In the modern world, the essentiality in the utilization of the e-commerce contents like movies, music and electronic goods becomes indispensable with diversified items searched over the internet. The relevant results of the items search are made feasible through the enforcement of filtering techniques since it determines relevant data for recommendation of an item. A diversified number of filtering schemes are available of filtering the data instead of accessing each data available on the internet for deriving associated results. The data access and efficiency, the process of identifying relevant results based on users’ preferences is challenging task. In this paper, the proposed Constrained Social Network Rating-based Neural Network Technique (CSNR-NNT) is presented with the key significances and implementation processes. This proposed CSNR-NNT significantly concentrates on the exploration of trustee information that aids in social content persuading selection process for facilitating superior recommendation. The proposed CSNR-NNT scheme utilized the benefits of neural learning for ensuring recommendation through the incorporation of distrust and trustee relation. This proposed CSNR-NNT scheme also aids in categorizing the positive and negative recommendation of the trustee based on the process of the prediction.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"3 ","pages":"Pages 80-86"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666603022000070/pdfft?md5=87ad3ea9e9bff958fd0a38bc82a5cf98&pid=1-s2.0-S2666603022000070-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Improved constrained social network rating-based neural network technique for recommending products in E-commerce environment\",\"authors\":\"Lohith Ottikunta\",\"doi\":\"10.1016/j.ijin.2022.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the modern world, the essentiality in the utilization of the e-commerce contents like movies, music and electronic goods becomes indispensable with diversified items searched over the internet. The relevant results of the items search are made feasible through the enforcement of filtering techniques since it determines relevant data for recommendation of an item. A diversified number of filtering schemes are available of filtering the data instead of accessing each data available on the internet for deriving associated results. The data access and efficiency, the process of identifying relevant results based on users’ preferences is challenging task. In this paper, the proposed Constrained Social Network Rating-based Neural Network Technique (CSNR-NNT) is presented with the key significances and implementation processes. This proposed CSNR-NNT significantly concentrates on the exploration of trustee information that aids in social content persuading selection process for facilitating superior recommendation. The proposed CSNR-NNT scheme utilized the benefits of neural learning for ensuring recommendation through the incorporation of distrust and trustee relation. This proposed CSNR-NNT scheme also aids in categorizing the positive and negative recommendation of the trustee based on the process of the prediction.</p></div>\",\"PeriodicalId\":100702,\"journal\":{\"name\":\"International Journal of Intelligent Networks\",\"volume\":\"3 \",\"pages\":\"Pages 80-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666603022000070/pdfft?md5=87ad3ea9e9bff958fd0a38bc82a5cf98&pid=1-s2.0-S2666603022000070-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666603022000070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603022000070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在现代世界,利用电子商务内容的必要性,如电影,音乐和电子产品变得不可或缺的多样化的项目在互联网上搜索。通过过滤技术的实施,使项目搜索的相关结果变得可行,因为过滤技术确定了项目推荐的相关数据。有多种过滤方案可用于过滤数据,而不是访问互联网上可用的每个数据以获得相关结果。数据的访问和效率,以及基于用户偏好识别相关结果的过程是一项具有挑战性的任务。本文介绍了基于约束社会网络评级的神经网络技术(CSNR-NNT)的关键意义和实现过程。这一建议的CSNR-NNT显著集中于对受托人信息的探索,这些信息有助于社会内容说服选择过程,以促进卓越的推荐。提出的CSNR-NNT方案利用神经学习的优势,通过引入不信任和信任关系来确保推荐。该建议的CSNR-NNT方案还有助于根据预测过程对受托人的正面和负面推荐进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved constrained social network rating-based neural network technique for recommending products in E-commerce environment

In the modern world, the essentiality in the utilization of the e-commerce contents like movies, music and electronic goods becomes indispensable with diversified items searched over the internet. The relevant results of the items search are made feasible through the enforcement of filtering techniques since it determines relevant data for recommendation of an item. A diversified number of filtering schemes are available of filtering the data instead of accessing each data available on the internet for deriving associated results. The data access and efficiency, the process of identifying relevant results based on users’ preferences is challenging task. In this paper, the proposed Constrained Social Network Rating-based Neural Network Technique (CSNR-NNT) is presented with the key significances and implementation processes. This proposed CSNR-NNT significantly concentrates on the exploration of trustee information that aids in social content persuading selection process for facilitating superior recommendation. The proposed CSNR-NNT scheme utilized the benefits of neural learning for ensuring recommendation through the incorporation of distrust and trustee relation. This proposed CSNR-NNT scheme also aids in categorizing the positive and negative recommendation of the trustee based on the process of the prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信