中大型数据快速排序、shell排序和归并排序运行时行为的实证研究

S. Mansoor Sarwar , Mansour H.A. Jaragh , Mike Wind
{"title":"中大型数据快速排序、shell排序和归并排序运行时行为的实证研究","authors":"S. Mansoor Sarwar ,&nbsp;Mansour H.A. Jaragh ,&nbsp;Mike Wind","doi":"10.1016/0096-0551(94)90019-1","DOIUrl":null,"url":null,"abstract":"<div><p>The paper describes the results of a large empirical study to measure the practical behavior of the basic versions of the popular internal sorting algorithms, Shellsort, quicksort, and mergesort, for medium to large size data and compares them with previous results. The results give running times of <em>θ</em>(<em>N</em><sup>1.25</sup>) for Shellsort, quicksort, and mergesort for 1000 &lt; <em>N</em> &lt; 2 × 10<sup>6</sup>. The study also shows that Shellsort behaves better than mergesort for 1000 &lt; <em>N</em> &lt; 150,000. However, mergesort outperforms Shellsort for <em>N</em> &gt; 150,000. Quicksort outperforms both Shellsort and mergesort for all values of <em>N</em> &gt; 1000. Our fits show better performance for Shellsort than the previous studies and are mostly accurate to within 2% for 1000 &lt; <em>N</em> &lt; 2 × 10<sup>6</sup>. The primary reason for this error seems to be related to the error in the measured data.</p></div>","PeriodicalId":100315,"journal":{"name":"Computer Languages","volume":"20 2","pages":"Pages 127-134"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0096-0551(94)90019-1","citationCount":"3","resultStr":"{\"title\":\"An empirical study of the run-time behavior of quicksort, Shellsort and mergesort for medium to large size data\",\"authors\":\"S. Mansoor Sarwar ,&nbsp;Mansour H.A. Jaragh ,&nbsp;Mike Wind\",\"doi\":\"10.1016/0096-0551(94)90019-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper describes the results of a large empirical study to measure the practical behavior of the basic versions of the popular internal sorting algorithms, Shellsort, quicksort, and mergesort, for medium to large size data and compares them with previous results. The results give running times of <em>θ</em>(<em>N</em><sup>1.25</sup>) for Shellsort, quicksort, and mergesort for 1000 &lt; <em>N</em> &lt; 2 × 10<sup>6</sup>. The study also shows that Shellsort behaves better than mergesort for 1000 &lt; <em>N</em> &lt; 150,000. However, mergesort outperforms Shellsort for <em>N</em> &gt; 150,000. Quicksort outperforms both Shellsort and mergesort for all values of <em>N</em> &gt; 1000. Our fits show better performance for Shellsort than the previous studies and are mostly accurate to within 2% for 1000 &lt; <em>N</em> &lt; 2 × 10<sup>6</sup>. The primary reason for this error seems to be related to the error in the measured data.</p></div>\",\"PeriodicalId\":100315,\"journal\":{\"name\":\"Computer Languages\",\"volume\":\"20 2\",\"pages\":\"Pages 127-134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0096-0551(94)90019-1\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0096055194900191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Languages","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0096055194900191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文描述了一项大型实证研究的结果,该研究测量了流行的内部排序算法(Shellsort、quicksort和归并排序)的基本版本对中大型数据的实际行为,并将它们与以前的结果进行了比较。结果给出了1000 <的shell排序、快速排序和归并排序的运行时间θ(N1.25);N & lt;2 × 106。研究还表明,在1000 <时,Shellsort的性能优于归并排序。N & lt;150000年。然而,对于N >,归并排序优于Shellsort;150000年。对于N >的所有值,快速排序都优于Shellsort和归并排序;1000. 我们的拟合显示Shellsort的性能比以前的研究更好,并且在1000 <中大多数精度在2%以内;N & lt;2 × 106。产生这种误差的主要原因似乎与测量数据中的误差有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An empirical study of the run-time behavior of quicksort, Shellsort and mergesort for medium to large size data

The paper describes the results of a large empirical study to measure the practical behavior of the basic versions of the popular internal sorting algorithms, Shellsort, quicksort, and mergesort, for medium to large size data and compares them with previous results. The results give running times of θ(N1.25) for Shellsort, quicksort, and mergesort for 1000 < N < 2 × 106. The study also shows that Shellsort behaves better than mergesort for 1000 < N < 150,000. However, mergesort outperforms Shellsort for N > 150,000. Quicksort outperforms both Shellsort and mergesort for all values of N > 1000. Our fits show better performance for Shellsort than the previous studies and are mostly accurate to within 2% for 1000 < N < 2 × 106. The primary reason for this error seems to be related to the error in the measured data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信