多体定位的通用光谱形状因子

A. Prakash, J. Pixley, M. Kulkarni
{"title":"多体定位的通用光谱形状因子","authors":"A. Prakash, J. Pixley, M. Kulkarni","doi":"10.1103/PHYSREVRESEARCH.3.L012019","DOIUrl":null,"url":null,"abstract":"We theoretically study universal correlations present in the spectrum of many-body-localized systems. We obtain an exact analytical expression for the spectral form factor of Poisson spectra and show that it agrees well with numerical results on two models exhibiting a many-body-localization: a disordered quantum spin chain and a phenomenological l-bit model based on the existence of local integrals of motion. We find that the functional form of the Poisson spectral form factor is distinct from but complementary to the universal expectation of quantum chaotic systems obtained from random matrix theory.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Universal spectral form factor for many-body localization\",\"authors\":\"A. Prakash, J. Pixley, M. Kulkarni\",\"doi\":\"10.1103/PHYSREVRESEARCH.3.L012019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We theoretically study universal correlations present in the spectrum of many-body-localized systems. We obtain an exact analytical expression for the spectral form factor of Poisson spectra and show that it agrees well with numerical results on two models exhibiting a many-body-localization: a disordered quantum spin chain and a phenomenological l-bit model based on the existence of local integrals of motion. We find that the functional form of the Poisson spectral form factor is distinct from but complementary to the universal expectation of quantum chaotic systems obtained from random matrix theory.\",\"PeriodicalId\":8438,\"journal\":{\"name\":\"arXiv: Disordered Systems and Neural Networks\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.3.L012019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.L012019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们从理论上研究了多体定域系统谱中存在的普遍相关性。我们得到了泊松谱的谱形因子的精确解析表达式,并证明了它与两种具有多体局域化的模型(无序量子自旋链和基于局部运动积分存在的l位现象学模型)的数值结果很好地吻合。我们发现泊松谱形式因子的泛函形式与量子混沌系统从随机矩阵理论得到的普遍期望不同,但又相辅相成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal spectral form factor for many-body localization
We theoretically study universal correlations present in the spectrum of many-body-localized systems. We obtain an exact analytical expression for the spectral form factor of Poisson spectra and show that it agrees well with numerical results on two models exhibiting a many-body-localization: a disordered quantum spin chain and a phenomenological l-bit model based on the existence of local integrals of motion. We find that the functional form of the Poisson spectral form factor is distinct from but complementary to the universal expectation of quantum chaotic systems obtained from random matrix theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信