基于硬、软伪标签识别面部宏、微表情的多时间流网络

Gen-Bing Liong, Sze‐Teng Liong, John See, C. Chan
{"title":"基于硬、软伪标签识别面部宏、微表情的多时间流网络","authors":"Gen-Bing Liong, Sze‐Teng Liong, John See, C. Chan","doi":"10.1145/3552465.3555040","DOIUrl":null,"url":null,"abstract":"This paper considers the challenge of spotting facial macro- and micro-expression from long videos. We propose the multi-temporal stream network (MTSN) model that takes two distinct inputs by considering the different temporal information in the facial movement. We also introduce a hard and soft pseudo-labeling technique to enable the network to distinguish expression frames from non-expression frames via the learning of salient features in the expression peak frame. Consequently, we demonstrate how a single output from the MTSN model can be post-processed to predict both macro- and micro-expression intervals. Our results outperform the MEGC 2022 baseline method significantly by achieving an overall F1-score of 0.2586 and also did remarkably well on the MEGC 2021 benchmark with an overall F1-score of 0.3620 and 0.2867 on CAS(ME)2 and SAMM Long Videos, respectively.","PeriodicalId":64586,"journal":{"name":"新华航空","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"MTSN: A Multi-Temporal Stream Network for Spotting Facial Macro- and Micro-Expression with Hard and Soft Pseudo-labels\",\"authors\":\"Gen-Bing Liong, Sze‐Teng Liong, John See, C. Chan\",\"doi\":\"10.1145/3552465.3555040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the challenge of spotting facial macro- and micro-expression from long videos. We propose the multi-temporal stream network (MTSN) model that takes two distinct inputs by considering the different temporal information in the facial movement. We also introduce a hard and soft pseudo-labeling technique to enable the network to distinguish expression frames from non-expression frames via the learning of salient features in the expression peak frame. Consequently, we demonstrate how a single output from the MTSN model can be post-processed to predict both macro- and micro-expression intervals. Our results outperform the MEGC 2022 baseline method significantly by achieving an overall F1-score of 0.2586 and also did remarkably well on the MEGC 2021 benchmark with an overall F1-score of 0.3620 and 0.2867 on CAS(ME)2 and SAMM Long Videos, respectively.\",\"PeriodicalId\":64586,\"journal\":{\"name\":\"新华航空\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"新华航空\",\"FirstCategoryId\":\"1094\",\"ListUrlMain\":\"https://doi.org/10.1145/3552465.3555040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"新华航空","FirstCategoryId":"1094","ListUrlMain":"https://doi.org/10.1145/3552465.3555040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文考虑了从长视频中识别面部宏观和微观表情的挑战。我们提出了一种多时间流网络(MTSN)模型,该模型考虑了面部运动中不同的时间信息,采用两个不同的输入。我们还引入了一种软硬伪标记技术,使网络能够通过学习表达峰值帧中的显著特征来区分表达帧和非表达帧。因此,我们演示了如何对MTSN模型的单个输出进行后处理,以预测宏观和微观表达间隔。我们的结果显着优于MEGC 2022基线方法,实现了0.2586的总体f1得分,并且在MEGC 2021基准上也表现出色,在CAS(ME)2和SAMM长视频上的总体f1得分分别为0.3620和0.2867。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MTSN: A Multi-Temporal Stream Network for Spotting Facial Macro- and Micro-Expression with Hard and Soft Pseudo-labels
This paper considers the challenge of spotting facial macro- and micro-expression from long videos. We propose the multi-temporal stream network (MTSN) model that takes two distinct inputs by considering the different temporal information in the facial movement. We also introduce a hard and soft pseudo-labeling technique to enable the network to distinguish expression frames from non-expression frames via the learning of salient features in the expression peak frame. Consequently, we demonstrate how a single output from the MTSN model can be post-processed to predict both macro- and micro-expression intervals. Our results outperform the MEGC 2022 baseline method significantly by achieving an overall F1-score of 0.2586 and also did remarkably well on the MEGC 2021 benchmark with an overall F1-score of 0.3620 and 0.2867 on CAS(ME)2 and SAMM Long Videos, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2744
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信