{"title":"传质双星的翻转自旋及双星黑洞自旋轨道偏差的成因","authors":"Jakob Stegmann, F. Antonini","doi":"10.1103/PHYSREVD.103.063007","DOIUrl":null,"url":null,"abstract":"Close stellar binaries are prone to undergo a phase of stable mass transfer in which a star loses mass to its companion. Assuming that the donor star loses mass along the instantaneous interstellar axis, we derive the orbit-averaged equations of motion describing the evolution of the donor rotational angular momentum vector (spin) which accompanies the transfer of mass. We consider: (i) a model in which the mass transfer rate is constant within each orbit and (ii) a phase-dependent rate in which all mass per orbit is lost at periapsis. In both cases, we find that the ejection of $\\gtrsim 30$ per cent of the donor's initial mass causes its spin to nearly flip onto the orbital plane of the binary, independently of the initial spin-orbit alignment. Moreover, we show that the spin flip due to mass transfer can easily dominate over tidal synchronisation in any giant stars and main-sequence stars with masses $\\sim1.5$ to $5\\,\\rm M_\\odot$. Finally, the general equations of motion, including tides, are used to evolve a realistic population of massive binary stars leading to the formation of binary black holes. Assuming that the stellar core and envelope are fully coupled, the resulting tilt of the first-born black hole reduces its spin projection onto the orbit normal by a factor $\\sim\\mathcal{O}(0.1)$. This result supports previous studies in favour of an insignificant contribution to the effective spin projection, $\\chi_{\\rm eff}$, in binary black holes formed from the evolution of field binaries.","PeriodicalId":8437,"journal":{"name":"arXiv: High Energy Astrophysical Phenomena","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Flipping spins in mass transferring binaries and origin of spin-orbit misalignment in binary black holes\",\"authors\":\"Jakob Stegmann, F. Antonini\",\"doi\":\"10.1103/PHYSREVD.103.063007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Close stellar binaries are prone to undergo a phase of stable mass transfer in which a star loses mass to its companion. Assuming that the donor star loses mass along the instantaneous interstellar axis, we derive the orbit-averaged equations of motion describing the evolution of the donor rotational angular momentum vector (spin) which accompanies the transfer of mass. We consider: (i) a model in which the mass transfer rate is constant within each orbit and (ii) a phase-dependent rate in which all mass per orbit is lost at periapsis. In both cases, we find that the ejection of $\\\\gtrsim 30$ per cent of the donor's initial mass causes its spin to nearly flip onto the orbital plane of the binary, independently of the initial spin-orbit alignment. Moreover, we show that the spin flip due to mass transfer can easily dominate over tidal synchronisation in any giant stars and main-sequence stars with masses $\\\\sim1.5$ to $5\\\\,\\\\rm M_\\\\odot$. Finally, the general equations of motion, including tides, are used to evolve a realistic population of massive binary stars leading to the formation of binary black holes. Assuming that the stellar core and envelope are fully coupled, the resulting tilt of the first-born black hole reduces its spin projection onto the orbit normal by a factor $\\\\sim\\\\mathcal{O}(0.1)$. This result supports previous studies in favour of an insignificant contribution to the effective spin projection, $\\\\chi_{\\\\rm eff}$, in binary black holes formed from the evolution of field binaries.\",\"PeriodicalId\":8437,\"journal\":{\"name\":\"arXiv: High Energy Astrophysical Phenomena\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Astrophysical Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVD.103.063007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.063007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flipping spins in mass transferring binaries and origin of spin-orbit misalignment in binary black holes
Close stellar binaries are prone to undergo a phase of stable mass transfer in which a star loses mass to its companion. Assuming that the donor star loses mass along the instantaneous interstellar axis, we derive the orbit-averaged equations of motion describing the evolution of the donor rotational angular momentum vector (spin) which accompanies the transfer of mass. We consider: (i) a model in which the mass transfer rate is constant within each orbit and (ii) a phase-dependent rate in which all mass per orbit is lost at periapsis. In both cases, we find that the ejection of $\gtrsim 30$ per cent of the donor's initial mass causes its spin to nearly flip onto the orbital plane of the binary, independently of the initial spin-orbit alignment. Moreover, we show that the spin flip due to mass transfer can easily dominate over tidal synchronisation in any giant stars and main-sequence stars with masses $\sim1.5$ to $5\,\rm M_\odot$. Finally, the general equations of motion, including tides, are used to evolve a realistic population of massive binary stars leading to the formation of binary black holes. Assuming that the stellar core and envelope are fully coupled, the resulting tilt of the first-born black hole reduces its spin projection onto the orbit normal by a factor $\sim\mathcal{O}(0.1)$. This result supports previous studies in favour of an insignificant contribution to the effective spin projection, $\chi_{\rm eff}$, in binary black holes formed from the evolution of field binaries.