面部视频去模糊使用3D面部先验

Wenqi Ren, Jiaolong Yang, Senyou Deng, D. Wipf, Xiaochun Cao, Xin Tong
{"title":"面部视频去模糊使用3D面部先验","authors":"Wenqi Ren, Jiaolong Yang, Senyou Deng, D. Wipf, Xiaochun Cao, Xin Tong","doi":"10.1109/ICCV.2019.00948","DOIUrl":null,"url":null,"abstract":"Existing face deblurring methods only consider single frames and do not account for facial structure and identity information. These methods struggle to deblur face videos that exhibit significant pose variations and misalignment. In this paper we propose a novel face video deblurring network capitalizing on 3D facial priors. The model consists of two main branches: i) a face video deblurring sub-network based on an encoder-decoder architecture, and ii) a 3D face reconstruction and rendering branch for predicting 3D priors of salient facial structures and identity knowledge. These structures encourage the deblurring branch to generate sharp faces with detailed structures. Our method not only uses low-level information (i.e., image intensity), but also middle-level information (i.e., 3D facial structure) and high-level knowledge (i.e., identity content) to further explore spatial constraints of facial components from blurry face frames. Extensive experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"30 1","pages":"9387-9396"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Face Video Deblurring Using 3D Facial Priors\",\"authors\":\"Wenqi Ren, Jiaolong Yang, Senyou Deng, D. Wipf, Xiaochun Cao, Xin Tong\",\"doi\":\"10.1109/ICCV.2019.00948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing face deblurring methods only consider single frames and do not account for facial structure and identity information. These methods struggle to deblur face videos that exhibit significant pose variations and misalignment. In this paper we propose a novel face video deblurring network capitalizing on 3D facial priors. The model consists of two main branches: i) a face video deblurring sub-network based on an encoder-decoder architecture, and ii) a 3D face reconstruction and rendering branch for predicting 3D priors of salient facial structures and identity knowledge. These structures encourage the deblurring branch to generate sharp faces with detailed structures. Our method not only uses low-level information (i.e., image intensity), but also middle-level information (i.e., 3D facial structure) and high-level knowledge (i.e., identity content) to further explore spatial constraints of facial components from blurry face frames. Extensive experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"30 1\",\"pages\":\"9387-9396\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

现有的人脸去模糊方法只考虑单帧图像,没有考虑到人脸结构和身份信息。这些方法很难去模糊那些表现出明显姿势变化和不对齐的面部视频。本文提出了一种基于三维人脸先验的人脸视频去模糊网络。该模型包括两个主要分支:i)基于编码器-解码器架构的人脸视频去模糊子网络;ii)用于预测显著面部结构和身份知识的3D先验的3D人脸重建和渲染分支。这些结构鼓励去模糊分支生成具有详细结构的尖锐面。我们的方法不仅利用低级信息(即图像强度),还利用中级信息(即三维面部结构)和高级知识(即身份内容),从模糊的人脸框架中进一步探索面部成分的空间约束。大量的实验结果表明,所提出的算法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Video Deblurring Using 3D Facial Priors
Existing face deblurring methods only consider single frames and do not account for facial structure and identity information. These methods struggle to deblur face videos that exhibit significant pose variations and misalignment. In this paper we propose a novel face video deblurring network capitalizing on 3D facial priors. The model consists of two main branches: i) a face video deblurring sub-network based on an encoder-decoder architecture, and ii) a 3D face reconstruction and rendering branch for predicting 3D priors of salient facial structures and identity knowledge. These structures encourage the deblurring branch to generate sharp faces with detailed structures. Our method not only uses low-level information (i.e., image intensity), but also middle-level information (i.e., 3D facial structure) and high-level knowledge (i.e., identity content) to further explore spatial constraints of facial components from blurry face frames. Extensive experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信